
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Floorplan-guided placement for large-scale mixed-
size designs
Zijun Yan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Yan, Zijun, "Floorplan-guided placement for large-scale mixed-size designs" (2011). Graduate Theses and Dissertations. 12209.
https://lib.dr.iastate.edu/etd/12209

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12209?utm_source=lib.dr.iastate.edu%2Fetd%2F12209&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Floorplan-guided placement for large-scale mixed-size designs

by

Zijun Yan

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Chris C.-N. Chu, Major Professor

Randall L. Geiger
Sigurdur Olafsson

Akhilesh Tyagi
Joseph A. Zambreno

Iowa State University

Ames, Iowa

2011

Copyright c© Zijun Yan, 2011. All rights reserved.

www.manaraa.com

ii

To my mom Shuxian Min,

and to the memory of

my uncle Dabao Min and my grandma Namei Li

. . .

(all is beyond words)

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . ix

ACKNOWLEDGMENTS . xi

ABSTRACT . xiii

CHAPTER 1 Introduction . 1

1.1 Modern Mixed-Size Placement . 1

1.2 Previous Work . 2

1.3 New Algorithm Flow and Key Techniques . 3

1.4 Dissertation Organization . 6

Note About Bibliography . 6

CHAPTER 2 Fixed-Outline Floorplanning . 8

2.1 Introduction . 8

2.1.1 Previous Work . 8

2.1.2 Our Contributions . 10

2.2 Algorithm Flow of DeFer . 12

2.3 Generalized Slicing Tree . 15

2.3.1 Notion of Generalized Slicing Tree . 15

2.3.2 Extended Shape Curve Operation . 16

2.3.3 Decision of Slice Line Direction for Terminal Propagation 17

2.4 Whitespace-Aware Pruning . 17

2.4.1 Motivation on WAP . 17

www.manaraa.com

iv

2.4.2 Problem Formulation of WAP . 18

2.4.3 Solving WAP . 21

2.5 Enumerative Packing . 22

2.5.1 A Naive Approach of Enumeration . 22

2.5.2 Enumeration by Dynamic Programming . 23

2.5.3 Impact of EP on Packing . 24

2.5.4 High-Level EP . 25

2.6 Block Swapping and Mirroring . 27

2.7 Extension of DeFer . 28

2.8 Implementation Details . 30

2.9 Experimental Results . 32

2.9.1 Experiments on Fixed-Outline Floorplanning 32

2.9.2 Experiments on Classical Outline-Free Floorplanning 44

2.10 Conclusion . 46

CHAPTER 3 General Floorplan-Guided Placement . 47

3.1 Introduction . 47

3.2 Overview of FLOP . 47

3.3 Block Formation and Floorplanning . 48

3.3.1 Usage of Exact Net Model . 49

3.3.2 Block Formation . 50

3.3.3 Generation of Shape Curve for Blocks . 51

3.4 Wirelength-Driven Shifting . 51

3.5 Incremental Placement . 52

3.6 MMS Benchmarks . 52

3.7 Experimental Results . 57

3.8 Conclusion . 61

CHAPTER 4 Hypergraph Clustering for Wirelength-Driven Placement 62

4.1 Introduction . 62

www.manaraa.com

v

4.1.1 Previous Work . 62

4.1.2 Our Contributions . 64

4.2 Safe Clustering . 66

4.2.1 Concept of Safe Clustering . 66

4.2.2 Safe Condition for Pair-Wise Clustering . 67

4.2.3 Selective Enumeration . 69

4.3 Algorithm of SafeChoice . 76

4.3.1 Priority-Queue Based Framework . 77

4.3.2 Operation Modes of SafeChoice . 77

4.4 Physical SafeChoice . 79

4.4.1 Safe Condition for Physical SafeChoice . 79

4.4.2 Enumeration Size Reduction based on Physical Location 80

4.4.3 Cost Function for Physical SafeChoice . 81

4.5 SafeChoice-Based Two-Phase Placement . 81

4.6 Experimental Results . 83

4.6.1 Comparison of Clustering Algorithms . 84

4.6.2 Comparison of Placement Algorithms . 96

4.7 Conclusion . 99

CHAPTER 5 Soft-Block Shaping in Floorplanning . 100

5.1 Introduction . 100

5.1.1 Previous Work . 100

5.1.2 Our Contributions . 101

5.2 Problem Formulation . 103

5.3 Basic Slack-Driven Shaping . 104

5.3.1 Target Soft Blocks . 106

5.3.2 Shaping Scheme . 107

5.3.3 Flow of Basic Slack-Driven Shaping . 109

5.4 Optimality Conditions . 111

www.manaraa.com

vi

5.5 Flow of Slack-Driven Shaping . 113

5.6 Experimental Results . 115

5.6.1 Experiments on MCNC Benchmarks . 116

5.6.2 Experiments on HB Benchmarks . 118

5.7 Conclusion . 122

CHAPTER 6 Geometry Constraint Aware Floorplan-Guided Placement 123

6.1 Introduction . 123

6.2 Overview of FLOPC . 123

6.3 Enhanced Annealing-Based Floorplanning . 124

6.3.1 Sequence Pair Generation from Given Layout 125

6.3.2 Sequence Pair Insertion with Location Awareness 129

6.3.3 Constraint Handling and Annealing Schedule 131

6.4 Experimental Results . 132

6.5 Conclusion . 133

BIBLIOGRAPHY . 136

www.manaraa.com

vii

LIST OF TABLES

Table 2.1 Comparison on # of ‘⊕’ operation. 24

Table 2.2 Comparison on GSRC Hard-Block benchmarks. 35

Table 2.3 Comparison on GSRC Soft-Block benchmarks. 37

Table 2.4 Comparison on HB benchmarks. 40

Table 2.5 Comparison on HB+ benchmarks. 43

Table 2.6 Comparison on linear combination of HPWL and area. 45

Table 2.7 Contributions of main techniques and runtime breakdown in DeFer. 45

Table 3.1 Statistics of Modern Mixed-Size placement benchmarks. 55

Table 3.2 Comparison with mixed-size placers on MMS benchmarks. 59

Table 3.3 Comparison with macro placers on modified ISPD06 benchmarks. 60

Table 4.1 Profile of selective enumeration for each circuit. 76

Table 4.2 Differences of three modes in SafeChoice. 78

Table 4.3 S∗ for three modes in Physical SafeChoice. 81

Table 4.4 Comparison with FirstChoice and BestChoice. 86

Table 4.5 Comparison with FirstChoice, BestChoice and NetCluster. 88

Table 4.6 Comparison with FirstChoice and BestChoice on various target γ. 90

Table 4.7 Comparison with multilevel mPL6. 95

Table 4.8 Comparison with original multilevel mPL6. 96

Table 4.9 HPWL comparison with state-of-the-art placement algorithms. 98

Table 4.10 Runtime breakdown of SCPlace. 99

Table 5.1 Comparison with Young et al.’s algorithm on MCNC benchmarks. 117

www.manaraa.com

viii

Table 5.2 Comparison with Lin et al.’s algorithm on MCNC benchmarks. 117

Table 5.3 Comparison on runtime complexity. 118

Table 5.4 Experimental results of SDS on HB benchmarks. 120

Table 6.1 List of geometry constraints in MMS benchmarks. 133

Table 6.2 Comparison with mixed-size placers on MMS benchmarks with constraints. . 134

www.manaraa.com

ix

LIST OF FIGURES

Figure 1.1 Example of modern mixed-size circuit. 2

Figure 1.2 Previous two-stage approach to handle mixed-size designs. 3

Figure 1.3 New algorithm flow for mixed-size placement. 4

Figure 2.1 Pseudocode on algorithm flow of DeFer. 12

Figure 2.2 High-level slicing tree. 13

Figure 2.3 Final shape curve with fixed outline and candidate points. 14

Figure 2.4 Generalized slicing tree and sixteen different layouts. 15

Figure 2.5 Extended shape curve operation. 16

Figure 2.6 Generation of whitespace during curve combination. 18

Figure 2.7 Calculation of Wpi and Wo. 20

Figure 2.8 List of different slicing tree structures. 23

Figure 2.9 Illustration of high-level EP. 26

Figure 2.10 One exception of identifying hTree. 27

Figure 2.11 Swapping and Mirroring. 28

Figure 2.12 Motivation on Rough Swapping. 28

Figure 2.13 Compacting invalid points into fixed outline. 29

Figure 2.14 Two strategies of identifying hRoot. 31

Figure 2.15 Tuned parameters at each run in DeFer. 31

Figure 2.16 Circuit n300 layouts generated by DeFer. 34

Figure 2.17 Circuit ibm03 layouts generated by PATOMA, Capo 10.5 and DeFer. 39

Figure 3.1 Generation of shape curves for blocks. 51

www.manaraa.com

x

Figure 3.2 Algorithm of analytical incremental placement. 53

Figure 3.3 Runtime breakdown of FLOP. 58

Figure 4.1 Example of indirect connections between objects a and b. 64

Figure 4.2 Simple examples of vertices that can be fixed. 72

Figure 4.3 Flow of selective enumeration. 75

Figure 4.4 Examples of three scenarios with square-shape region. 81

Figure 4.5 Simple two-phase placement flow in SCPlace. 82

Figure 4.6 Experimental flow for clustering algorithm. 84

Figure 4.7 Average normalized clustering time to SC-R. 93

Figure 4.8 Average normalized HPWL to flat-mPL6. 94

Figure 4.9 Average normalized total time to flag-mPL6. 94

Figure 5.1 Flow of basic slack-driven shaping. 110

Figure 5.2 Example of a non-optimal solution from basic SDS. 112

Figure 5.3 Examples of three optimal cases in L. 113

Figure 5.4 Flow of slack-driven shaping. 114

Figure 5.5 Layout-height convergence graphs of four circuits. 121

Figure 6.1 Flow of enhanced annealing-based floorplanning. 126

Figure 6.2 Divided eight chip regions around block b. 127

Figure 6.3 Calculation of insertion range in S+
c . 134

Figure 6.4 Calculation of insertion range in S−c . 135

www.manaraa.com

xi

ACKNOWLEDGMENTS

I would like to take this opportunity to express my thanks to the people who helped me on every

aspect of conducting this research and supporting my daily study, work and life.

First of all, I would like to express my deepest thanks to my advisor, Prof. Chris Chu, not only

for his patient guidance and great support through this research as a mentor, but also for his sincere

personality as a friend. I am deeply impressed by his novel ideas and invaluable insight on VLSI

physical design, his dedication to work and research, and his passion and belief in God. His guidance

and ideas have been involved in every aspect of my research work, from research topic selection to

experimental results analysis, from algorithm design to code implementation, from paper organization

to paper revision, from slides preparation to conference presentation, etc. Prof. Chu always asks me to

aim higher. Without his endless encouragement and constructive criticisms, I would never achieve this

far. He also provided me ample opportunities to be exposed to both industrial and academic occasions,

e.g., Cadence Research Labs internship, IBM on-site visit, DAC summer school, IBM Ph.D. Fellowship

application, etc. It has been such a remarkable experience to work with him, as my advisor. Besides

that, Chris is also a truly friend to talk with. For so many times, we have had deep discussions on

various topics including human life, Christianity, courtesy and politeness, correct attitude on personal

achievement and public recognition, career goals, various hobbies (e.g., fishing and physical exercises)

and so on. Both my professional and personal life have immensely benefited from these discussions.

Thank you!

Secondly, I would like to thank Prof. Randall Geiger, Prof. Olafsson Sigurdur, Prof. Akhilesh Tyagi

and Prof. Joseph Zambreno for their time to serve in my Ph.D. committee and valuable comments on

my work. I especially thank Joe. It was a great time to work with him during my early graduate period.

He was a “life saver” in several occasions: 1) He helped me to fix a latex problem just a couple of

www.manaraa.com

xii

minutes before one paper submission deadline; 2) He fixed one critical bug in my code, which I may

never be able to figure out by myself.

Thirdly, I am also grateful to the colleagues at other universities and industrial companies for their

sharp comments and kindly assistance on my research. They are, but not limited to, Prof. Wai-Kei Mak

and Prof. Ting-Chi Wang from National Tsing Hua University, Prof. Robert Dick and Prof. Igor Markov

from University of Michigan, Prof. Yao-Wen Chang from National Taiwan University, Prof. Evan-

geline Young from Chinese University of Hong Kong, Prof. Hai Zhou from Northwestern Univer-

sity, Prof. George Karypis from University of Minnesota, Dr. Charles Alpert, Dr. Gi-Joon Nam and

Dr. Natarajan Viswanathan from IBM Austin Research Labs, Dr. Philip Chong and Dr. Christian Szegedy

from Cadence Research Labs, Guojie Luo from University of California, Los Angeles, Logan Rakai

from University of Calgary. Special thanks goes to Natarajan. His work and effort on FastPlace3, the

analytical placement algorithm, play a critical role in my research work. I am also greatly appreciated

my colleagues at Cadence Design Systems, Dr. Chin-Chi Teng, Dr. Dennis Huang and Dr. Lu Sha for

their understanding and supporting me to finish up this dissertation, while I am a full-time employee.

Last but not least, I want to express my thanks to the fellow friends at Iowa State University, Wanyu

Ye, Jiang Lin, Song Sun, Bojian Xu, Song Lu, Jerry Cao, Yanheng Zhang, Yue Xu, Enlai Xu, Xin Zhao,

Willis Alexander, Brice Batemon, Genesis Lightbourne, Steve Luhmann, Ranran Fan, George Hatfield,

Mallory Parmerlee and many others. They made my life at Ames, my first stop in U.S., so wonderful

and memorable!

To each of the above person, I extend my deepest appreciation . . .

Sunnyvale, California

May 26, 2011

www.manaraa.com

xiii

ABSTRACT

In the nanometer scale era, placement has become an extremely challenging stage in modern Very-

Large-Scale Integration (VLSI) designs. Millions of objects need to be placed legally within a chip

region, while both the interconnection and object distribution have to be optimized simultaneously. Due

to the extensive use of Intellectual Property (IP) and embedded memory blocks, a design usually con-

tains tens or even hundreds of big macros. A design with big movable macros and numerous standard

cells is known as mixed-size design. Due to the big size difference between big macros and standard

cells, the placement of mixed-size designs is much more difficult than the standard-cell placement.

This work 1 presents an efficient and high-quality placement tool to handle modern large-scale

mixed-size designs. This tool is developed based on a new placement algorithm flow. The main idea

is to use the fixed-outline floorplanning algorithm to guide the state-of-the-art analytical placer. This

new flow consists of four steps: 1) The objects in the original netlist are clustered into blocks; 2)

Floorplanning is performed on the blocks; 3) The blocks are shifted within the chip region to further

optimize the wirelength; 4) With big macro locations fixed, incremental placement is applied to place

the remaining objects. Several key techniques are proposed to be used in the first two steps. These

techniques are mainly focused on the following two aspects: 1) Hypergraph clustering algorithm that

can cut down the original problem size without loss of placement Quality of Results (QoR); 2) Fixed-

outline floorplanning algorithm that can provide a good guidance to the analytical placer at the global

level.

The effectiveness of each key technique is demonstrated by promising experimental results com-

pared with the state-of-the-art algorithms. Moreover, using the industrial mixed-size designs, the new

placement tool shows better performance than other existing approaches.

1This work was partially supported by IBM Faculty Award, NSF under grant CCF-0540998 and NSC under grant NSC
99-2220-E-007-007.

www.manaraa.com

1

CHAPTER 1 Introduction

A journey of a thousand miles starts with a single step and

if that step is the right step, it becomes the last step.

— Lao Tzu

1.1 Modern Mixed-Size Placement

In the nanometer scale era, placement has become an extremely challenging stage in modern VLSI

designs. Millions of objects need to be placed legally within a chip region, while both the intercon-

nection and object distribution have to be optimized simultaneously. As an early step of VLSI physical

design flow, the quality of the placement solution has significant impacts on both routing and manu-

facturing. In modern System-on-Chip (SoC) designs, the usage of IP and embedded memory blocks

becomes more and more popular. As a result, a design usually contains tens or even hundreds of big

macros which can be either movable or preplaced. A design with big macros and numerous standard

cells is known as mixed-size design. An example of modern mixed-size circuit is shown in Figure 1.1.

For mixed-size designs, the placement of big macros plays a key role. Due to the big size difference

between big macros and standard cells, the placement of mixed-size designs is much more difficult

than the standard-cell placement. Existing placement algorithms perform very poorly on mixed-size

designs. They usually cannot generate a legal solution by themselves, and have to rely on a post-

placement legalization process. However, legalizing big macros with wirelength minimization has been

considered very hard to solve for a long time. Moreover, sometimes the big macros have various

geometry constraints, e.g., preplaced, boundary, distance constraints, etc. This makes the problem

www.manaraa.com

2

Figure 1.1 Example of modern mixed-size circuit, which contains 2177353 objects and 2228903 nets.
The blue dots represent standard cells, and the white rectangular regions represent macros.

of mixed-size placement even harder. As existing placement algorithms simply cannot handle such

geometry constraints, the designer has to place these macros manually beforehand.

1.2 Previous Work

Most mixed-size placement algorithms place both the macros and the standard cells simultaneously.

Examples are the annealing-based placer Dragon [1], the partitioning-based placer Capo [2], and the

analytical placers FastPlace3 [3], APlace2 [4], Kraftwerk [5], mPL6 [6], and NTUplace3 [7]. The

analytical placers are the state-of-the-art placement algorithms. They can produce the best results in the

best runtime. However, the analytical approach has three problems. First, only an approximation (e.g.,

by log-sum-exp or quadratic function) of the HPWL is minimized. Second, the distribution of objects

is also approximated and that usually results in a substantial amount of overlaps. They have to rely on

a legalization step to resolve the overlaps. For mixed-size designs, such legalization process is very

difficult and is likely to significantly increase the wirelength. Third, analytical placers cannot optimize

macro orientations and handle various geometry constraints.

www.manaraa.com

3

Macro Placer
/ Legalizer

Initial
Placement

Standard-cell
Placer

Stage 1 Stage 2

Figure 1.2 Previous two-stage approach to handle mixed-size designs.

Other researchers apply a two-stage approach as shown in Figure 1.2 to handle the mixed-size

placement. An initial wirelength-driven placement is first generated. Then a macro placement or legal-

ization algorithm is used to place only the macros, without considering the standard cells. After that,

the macros are fixed, and the standard cells are re-placed in the remaining whitespace from scratch.

As the macro placement is a crucial stage in this flow, people propose different techniques to improve

the QoR. Based on the MP-tree representation, Chen et al. [8] used a packing-based algorithm to place

the macros around the four corners of the chip region. In [9], a Transitive Closure Graph (TCG) based

technique was applied to enhance the quality of macro placement. One main problem with the above

two approaches is that the initial placement is produced with large amount of overlaps. Thus, the initial

solution may not provide good suggestions to the locations of objects. However, the following macro-

placement stage determines the macro locations by minimizing the displacement from the low-quality

initial placement.

Alternatively, Adya et al. [10] used an annealing-based floorplanner to directly minimize the HPWL

among the macros and clustered standard cells at the macro-placement stage. But, they still have to rely

on the illegal placement to determine the initial locations of macros and clusters. For all of the above

two-stage approaches, after fixing the macros, the initial positions of standard cells have to be discarded

to reduce the overlaps.

1.3 New Algorithm Flow and Key Techniques

In this dissertation, an efficient and high-quality placement tool is presented to effectively handle

the complexities of modern large-scale mixed-size placement. Such tool is developed based on a new

placement flow that integrates floorplanning and incremental placement algorithms. The main idea

of this flow is to use the fixed-outline floorplanner to guide the state-of-the-art analytical placer. As

www.manaraa.com

4

Block Formation

Wirelength-driven
Shifting

Floorplanning

Incremental
Placement

Figure 1.3 New algorithm flow for mixed-size placement.

floorplanners have a good capability of handling a small number of objects [2], we apply floorplan-

ning algorithm on the clustered circuit to generate a global overlap-free layout, and use it to guide the

subsequent placement algorithm.

The proposed new algorithm flow for mixed-size placement is as follows (see Figure 1.3).

1. Block Formation: The purpose of the first step is to cut down the problem size. We define

“small objects” as small macros and standard cells. The small objects are clustered into soft

blocks, while each big macro is treated as a single hard block.

2. Floorplanning: In this step, a floorplanner is applied on the blocks to directly minimize the exact

HPWL. Simultaneously, the objects are precisely distributed across the chip region to guarantee

an overlap-free layout.

3. Wirelength-Driven Shifting: In order to further optimize the HPWL, the blocks are shifted at the

floorplan level. After shifting, big macros are fixed. The remaining movable objects are assumed

to be at the center of the corresponding soft block.

4. Incremental Placement: Lastly, the placement algorithm will place the remaining objects. The

initial positions of such objects provided by the previous step are used to guide the incremental

placement.

www.manaraa.com

5

Generally, there are several advantages of handling mixed-size placement at global level with floor-

planning technique. First, the problem size can be significantly reduced, so that the algorithm performs

more efficiently and effectively. Second, the exact HPWL can be minimized at floorplan level. Third,

precise object distribution can be achieved, so that the legalization in placement stage only needs to

handle minor overlaps among small objects. Last but not least, macro rotation and various placement

constraints can be addressed in the floorplanning stage. Comparing this new methodology with the

state-of-the-art analytical placers, we can see that it is superior in several aspects: 1) The exact HPWL

is optimized in Steps 1–3; 2) The objects are more precisely distributed in Step 2; 3) Placement con-

straints and macro orientation optimization can be handled in Step 2. Compared with the previous two-

stage approach, instead of starting from an illegal initial placement, we use the floorplanner to directly

generate a global overlap-free layout among the big macros, as well as between big macros and small

objects. In addition, the problem size has been significantly reduced by clustering. A good floorplanner

is able to produce a high-quality global layout for the subsequent incremental placer. Furthermore, the

initial positions of the small objects are not discarded. We keep such information as a starting point of

incremental placement. Since the big macros have already been fixed, the placer avoids the difficulty of

legalizing the big macros.

To implement an effective and high-quality floorplan-guided placement tool, we focus on devel-

oping creative components and key techniques used in the first two steps of the new flow shown in

Figure 1.3. Specifically, the developed key techniques are as follows.

• To produce a good initial layout at the global level, a high-quality and efficient floorplanning

algorithm is needed. We propose DeFer [11] [12] that is a fast, high-quality, non-stochastic and

scalable fixed-outline floorplanner.

• Based on DeFer, we implement a robust, efficient and high-quality floorplan-guided placer, called

FLOP [13]. It effectively handles the placement of mixed-size designs with all movable objects

including both macros and standard cells. FLOP can also optimize the macro orientation respect-

ing to packing and wirelength optimization.

• To cope with ever-increasing design complexity, we propose a completely new hypergraph clus-

www.manaraa.com

6

tering algorithm, called SafeChoice [14] [15], to be used in the block formation step. This novel

clustering algorithm is capable of significantly cutting down the problem size, while guaranteeing

that clustering would not degrade the placement quality.

• An enhanced simulated annealing based framework is adopted as part of the fixed-outline floor-

planning step. One of the key enhancement we propose is a slack-driven block shaping algorithm,

call SDS [16]. SDS is an efficient, scalable and optimal shaping algorithm that is specifically for-

mulated for fixed-outline floorplanning.

• To handle various geometry constraints, we integrate SafeChoice and the enhanced annealing-

based floorplanning framework into FLOP, and implement the geometry constraint aware floorplan-

guided placement tool, called FLOPC. This ultimate tool can effectively handle large-scale mixed-

size designs with geometry constraints, such as preplaced, boundary and region constraints, etc.

The effectiveness of each key technique mentioned above is demonstrated by promising experimental

results compared with the state-of-the-art algorithms. The experiments are established based on the

benchmarks derived from modern industrial mixed-size designs.

1.4 Dissertation Organization

This section describes the organization of the remaining part of this dissertation.

Chapter 2 describes the fixed-outline floorplanner DeFer. Chapter 3 presents the FLOP algorithm

implemented to handle the mixed-size designs without geometry constraints. Chapter 4 describes the

hypergraph clustering algorithm SafeChoice. This is followed by Chapter 5 which presents the optimal

slack-driven block shaping algorithm SDS. Chapter 6 describes the geometry constraint aware mixed-

size placer FLOPC that is based on the proposed enhanced annealing-based floorplanning. Compre-

hensive experimental results of each key technique and the direction of future work are presented at the

end of the corresponding chapter.

www.manaraa.com

7

Note About Bibliography

The following abbreviations have been used to refer to the conferences in which the reference papers

are published.

ASP-DAC Asia and South Pacific Design Automation Conference

DAC Design Automation Conference

DATE Design Automation and Test in Europe

ICCAD International Conference on Computer-Aided Design

ICCD International Conference on Computer Design

ISPD International Symposium on Physical Design

www.manaraa.com

8

CHAPTER 2 Fixed-Outline Floorplanning

When it is not necessary to make a decision, it is necessary not to make a decision.

— Lord Falkland

2.1 Introduction

Floorplanning has become a very crucial step in modern VLSI designs. As the start of physical

design flow, floorplanning not only determines the top-level spatial structure of a chip, but also initially

optimizes the interconnections. Thus a good floorplan solution among circuit modules definitely has

a positive impact on the placement, routing and even manufacturing. In the nanometer scale era, the

ever-increasing complexity of ICs promotes the prevalence of hierarchical design. However, as pointed

out by Kahng [17], classical outline-free floorplanning [18] cannot satisfy such requirements of modern

designs. In contrast with this, fixed-outline floorplanning enabling the hierarchical framework is pre-

ferred by modern ASIC designs. Nevertheless, fixed-outline floorplanning has been shown to be much

more difficult, compared with classical outline-free floorplanning, even without considering wirelength

optimization [19].

2.1.1 Previous Work

Simulated annealing has been the most popular method of exploring good solutions on the fixed-

outline floorplanning problem. Using sequence pair representation, Adya et al. [20] modified the ob-

jective function, and proposed a few new moves based on slack computation to guide a better local

search. To improve the floorplanning scalability and initially optimize the interconnections, in [2] the

original circuit is first cut into multiple partitions by a min-cut partitioner. Simultaneously the chip

www.manaraa.com

9

region is split into small bins. After that, the annealing-based floorplanner [20] performs fixed-outline

floorplanning on each partition within its associated bin. In [21], Chen et al. adopted the B*-tree [22]

representation to describe the geometric relationships among modules, and performed a novel 3-stage

cooling schedule to speed up the annealing process. In [23] a multilevel partitioning step is performed

beforehand on the original circuit. Different from [2], the annealing-based fixed-outline floorplanner

is performed iteratively at each level of the multilevel framework. By enumerating the positions in

sequence pairs, Chen et al. [24] applied Insertion after Remove (IAR) to accelerate the simulated an-

nealing. As a result, both the runtime and success rate1 are enhanced dramatically. Recently, using

Ordered Quadtree representation, He et al. [25] adopted quadratic equations to solve the fixed-outline

floorplanning problem.

All of the above techniques are based on simulated annealing. Generally the authors tried various

approaches to improve the algorithm efficiency. But one common drawback is that these techniques do

not have a good scalability. They become quite slow when the size of circuits grows large, e.g., 100

modules. Additionally the annealing-based techniques always have a hard time handling circuits with

soft modules, because they need to search a large solution space, which can be time-consuming.

Some researchers have adopted non-stochastic methods. In [26], a slicing tree is first built up by

recursively partitioning the original circuit until each leaf node contains at most 2 modules. Then

the authors rely on various heuristics to determine the geometry relationships among the modules and

output a final floorplan solution. Sassone et al. [27] proposed an algorithm containing two phases.

First the modules are grouped together only based on connectivity. Second the modules are packed

physically by a row-oriented block packing technique which organizes the modules by rows based

on their dimensions. But this technique cannot handle soft modules. In [28], Zhan et al. applied

a quadratic analytical approach similar to those used for placement problems. To generate a non-

overlapping floorplan, the quadratic approach relies on a legalization process. However, this legalization

is very difficult for circuits with big hard macros. Cong et al. [29] presented an area-driven look-ahead

floorplanner in a hierarchical framework. Two main techniques are used in their algorithm: the row-

oriented block packing (ROB) and zero-dead space (ZDS). To handle both hard and soft modules, ROB
1Success rate is defined as the ratio of the number of runs resulting a layout within fixed-die, to the total number of runs.

www.manaraa.com

10

is extended from [27]. ZDS is used to pack soft modules. But, ROB may generate a layout with large

whitespace when the module sizes in a subfloorplan are quite different from each other, e.g., a design

with big hard macros.

2.1.2 Our Contributions

This chapter presents a fast, high-quality, scalable and non-stochastic fixed-outline floorplanner

called DeFer. It can efficiently handle both hard and soft modules.

DeFer generates a final non-slicing floorplan by compacting a slicing floorplan. It has been proved

in [30] that any non-slicing floorplan can be generated by compacting a slicing floorplan. In traditional

annealing-based approaches, obtaining a good slicing floorplan usually takes a long time, because the

algorithms have to search many slicing trees. By comparison, DeFer considers only one single slicing

tree generated by recursive partitioning. However, to guarantee that a large solution space is explored,

we generalize the notion of slicing tree [18] based on the principle of Deferred Decision Making (DDM).

When two subfloorplans are combined at each node of the generalized slicing tree, DeFer does not

specify their orientations, the left-right/top-bottom order between them, and the slice line direction. For

small subfloorplan, DeFer even does not specify its slicing tree structure, i.e., the skeletal structure (not

including tree nodes) in the slicing tree. In other words, we are deferring the decisions on these four

factors correspondingly: (1) Subfloorplan Orientation; (2) Subfloorplan Order; (3) Slice Line Direction;

(4) Slicing Tree Structure. Because of DDM, one slicing tree actually represents a large number of

slicing floorplan solutions. In DeFer all of these solutions are efficiently maintained in a single shape

curve [31]. With the final shape curve, it is straightforward to choose a good slicing floorplan fitting

into the fixed outline. To realize the DDM idea, we propose the following techniques:

• Generalized Slicing Tree — To defer the decisions on these three factors: (1) Subfloorplan Orien-

tation; (2) Subfloorplan Order; (3) Slice Line Direction, we generalize the original slicing tree. In

the generalized slicing tree, one tree node can represent both orientations of its two child nodes,

both orders between them and both horizontal and vertical slice lines. Note that the work in [31]

and [32] only generalized the orientation for individual module and the slice line direction, re-

spectively. In order to carry out the combination of generalized slicing trees, we also extend

www.manaraa.com

11

original shape curve operation to curve Flipping and curve Merging2.

• Enumerative Packing — To defer the decision on the slicing tree structure within small sub-

floorplan, we develop the Enumerative Packing (EP) technique. It enumerates all possible slicing

structures, and builds up one shape curve capturing all slicing layouts among the modules of

small subfloorplan. The naive enumeration is very expensive in terms of CPU time and memory

usage. But using the technique of dynamic programming, EP can be efficiently applied to up to

10 modules.

• Block Swapping and Mirroring — To make the decision on the subfloorplan order (left-right/top-

bottom), we adopt three techniques: Rough Swapping, Detailed Swapping [26], and Mirroring.

The motivation is to greedily optimize the wirelength. As far as we know, we are the first propos-

ing the Rough Swapping technique and showing that without Rough Swapping Detailed Swapping

may degrade the wirelength.

Additionally, we adopt the following three methods to enhance the robustness and quality of DeFer.

• Terminal Propagation — DeFer accounts for fixed pins by using Terminal Propagation (TP) [33]

during partitioning process.

• Whitespace-Aware Pruning (WAP) — A pruning method is proposed to systematically control

the number of points on each shape curve.

• High-Level EP — Based on EP, we propose the High-level EP technique to further improve the

packing quality.

By switching the strategy of selecting the points on the final shape curve, we extend DeFer to handle

other floorplanning problems, e.g., classical outline-free floorplanning,

For fixed-outline floorplanning, experimental results on GSRC Hard-Block, GSRC Soft-Block, HB

(containing both hard and soft modules), and HB+ (a hard version of HB) benchmarks show that DeFer

achieves the best success rate, the best wirelength and the best runtime on average, compared with

all other state-of-the-art floorplanners. The runtime difference between small and large circuits shows
2In Chapter 2 all slicing trees and shape curve operation stand for the generalized version by default.

www.manaraa.com

12

Algorithm Flow of DeFer
Begin
Step 1): Top-down recursive min-cut bisectioning
Step 2): Bottom-up recursive shape curve combination
Step 3): Top-down tracing selected points
Step 4): Top-down wirelength refinement by swapping
Step 5): Slicing floorplan compaction
Step 6): Greedy wirelength-driven shifting
End

Figure 2.1 Pseudocode on algorithm flow of DeFer.

DeFer’s good scalability. For classical outline-free floorplanning, using a linear combination of area

and wirelength as the objective, DeFer achieves 12% better cost value than Parquet 4.5 with 76× faster

runtime.

The rest of this chapter is organized as follows. Section 2.2 describes the algorithm flow. Sec-

tion 2.3 introduces the Generalized Slicing Tree. Section 2.4 describes the Whitespace-Aware Pruning.

Section 2.5 describes the Enumerative Packing technique. Section 2.6 illustrates the Block Swapping

and Mirroring. Section 2.7 introduces the extension of DeFer on other floorplanning problems. Sec-

tion 2.8 addresses the implementation details. Experimental results are presented in Section 2.9. Finally,

this chapter ends with a conclusion.

2.2 Algorithm Flow of DeFer

Essentially, DeFer has six steps as shown in Figure 2.1. The details of each step are as follows.

1. Partitioning Step: As the number of modules in one design becomes large, exploring all slicing

layout solutions among them is very expensive. Thus, the purpose of this step is to divide the

original circuit into several small subcircuits, and initially minimize the interconnections among

them. hMetis [34], the state-of-the-art hypergraph partitioner, is called to perform a recursive

bisectioning on the circuit, until every partition contains less than or equal to maxN modules

(maxN = 10 by default). Terminal Propagation (TP) is used in this step. Theoretically TP

can be applied at any cut. But as using TP degrades the packing quality (see Section 2.3.3), we

www.manaraa.com

13

Subpartition
(tree node)

Subcircuit
(leaf node)

Original
Circuit

Figure 2.2 High-level slicing tree.

apply it only at the first cut on the original circuit. During partitioning, a high-level slicing tree

structure is built up where each leaf node is a subcircuit, and each tree node is a subpartition

(see Figure 2.2). Due to the generalized notion of slicing tree, the whole high-level slicing tree

not only sets up a hierarchical framework, but also represents many possible packing solutions

among the subcircuits.

2. Combining Step: In this step, we first defer the decision on the slicing tree structure of each

subcircuit, by applying the Enumerative Packing technique to explore all slicing packing layouts

within the subcircuit. After that, an associated shape curve representing these possible layouts

for each subcircuit is produced. Then, based on the hierarchical framework in Step 1, DeFer

traverses from bottom-up constructing a shape curve for every tree node. The final shape curve

at the root will maintain all explored slicing floorplan layouts of the whole circuit.

3. Back-tracing Step: Once the final shape curve is available, it is fairly straightforward to select

the points fitting into the fixed outline (see Figure 2.3). For each of the points we select, a back-

tracing3 process is applied. As every point in the parent curve is generated by adding two points

from two child curves, basically the back-tracing is to trace the selected point on each shape

curve from top-down. During this process, DeFer makes the decisions on every subfloorplan

orientation, slice line direction and slicing tree structure of each subcircuit.
3Back-tracing is different from backtracking [2] which traverses from bottom-up to determine legal solutions.

www.manaraa.com

14

Final shape curve
Fixed outline

W

H

(0, 0)

Valid solutions

Figure 2.3 Final shape curve with fixed outline and candidate points.

4. Swapping Step: The fourth step is to make decisions on the subfloorplan order (left-right/top-

bottom), by greedily swapping every two child subfloorplans. Basically we perform three wire-

length refinement processes through the hierarchical framework. First, Rough Swapping is ap-

plied from top-down, followed by Detailed Swapping. Finally, we apply Mirroring.

5. Compacting Step: After fixing the slicing floorplan, this step is to compact all modules to the

center of the fixed outline. The compaction puts modules closer to each other, such that the wire-

length is further reduced. If the slicing floorplan is outside of the fixed outline, DeFer compacts

them to the lower-left corner rather than the center, so that potentially there is a higher chance to

find a valid layout within the fixed outline.

6. Shifting Step: In Step 5, some modules may be over-compacted. So we greedily shift such

modules towards the optimal positions [35] regarding wirelength minimization. At the end, DeFer

outputs the final floorplan.

From the algorithm flow, we can see that by initially deferring the decisions in Steps 1 and 2, DeFer

explores a large collection of slicing layouts, all of which are efficiently maintained in one final shape

curve at the top; by finally making the decisions in Steps 3 and 4, DeFer chooses good slicing layouts

fitting into the fixed outline. The main techniques are discussed in detail in Sections 2.3-2.7.

www.manaraa.com

15

A B

A B A B A B A B

A

B

A

B

A
B

A

B

AB AB AB AB

A

B
A

B

A
B

A

B

Figure 2.4 Generalized slicing tree and sixteen different layouts.

2.3 Generalized Slicing Tree

In this section, we introduce the generalized slicing tree, which enables the deferred decisions on

these three factors: (1) Subfloorplan Orientation; (2) Subfloorplan Order; (3) Slice Line Direction.

2.3.1 Notion of Generalized Slicing Tree

In an ordinary slicing tree, the parent tree node of two child subfloorplans A and B is labeled

‘H’/‘V’ to specify that A and B are separated by a horizontal/vertical slice line, and the order between

the two child nodes in the slicing tree specifies the top-bottom/left-right order of A and B in the layout.

For example, if in the ordinary slicing tree the left child is A, the right child is B, and the parent node is

labeled ‘V’, then in the corresponding layout A is on the left of B. If we want to switch to other layouts

between A and B, then the slicing tree has to be changed as well.

Now we generalize the ordinary slicing tree, such that one generalized slicing tree represents mul-

tiple slicing layouts. Here we introduce a new operator — ‘⊕’ to incorporate both ‘H’ and ‘V’ slice

line directions. Moreover, we do not differentiate the ‘top-bottom’ or ‘left-right’ order between the two

child subfloorplans any more, which means even though we put A at the left child, it can be switched

to the right later on. We even do not specify the orientation for each subfloorplan. As a result, the de-

cisions on slice line direction, subfloorplan order, and subfloorplan orientation are deferred. Now each

parent node in the slicing tree represents all sixteen slicing layouts between two child subfloorplans (see

Figure 2.4).

www.manaraa.com

16

W

A B
H

Ch

W = H

W

H

C h

W = H

C v

W

H

C h

W = H

C v

(a) Addition (b) Flipping (c) Merging

k’k

C

Figure 2.5 Extended shape curve operation.

2.3.2 Extended Shape Curve Operation

To actualize the slicing tree combination we use the shape curve operation. The shape of each

subfloorplan is captured by its associated shape curve. In order to derive a compatible operation for the

new operator ‘⊕’, we develop three steps to combine two child curves A and B into one parent curve

C.

1. Addition: Firstly, we add two curves A and B horizontally to get curve Ch, on which each point

corresponds to a horizontal combination of two subfloorplan layouts from A and B, respectively

(see Figure 2.5 (a)).

2. Flipping: Next, we flip curve Ch symmetrically based on the W = H line to derive curve

Cv. The purpose of doing this is to generate the curve that contains the corresponding vertical

combination cases from the two subfloorplan layouts (see Figure 2.5 (b)).

3. Merging: The final step is to merge Ch and Cv into the parent curve C. Since the curve function

is a bijection from set W to set H , for a given height only one point can be kept. We choose the

point with a smaller width out of Ch and Cv, e.g., point k in Figure 2.5 (c), because such point

corresponds to smaller floorplan area.

As a result, we have derived three steps to actualize the operator ‘⊕’ in the slicing tree combination.

Now given two child curves corresponding to two child subfloorplans in the slicing tree, these three

steps are applied to combine the two curves into one parent curve, in which the entire slicing layouts

between the two child subfloorplans are captured.

www.manaraa.com

17

2.3.3 Decision of Slice Line Direction for Terminal Propagation

Because all cut line directions in the high-level slicing tree are undetermined, we cannot apply Ter-

minal Propagation (TP) during partitioning. In order to enable TP, we pre-decide the cut line direction

based on the aspect ratio4 τp of the subpartition region. That is, if τp > 1, the subpartition will be

cut “horizontally”; otherwise, it will be cut “vertically”. In principle, we can use such strategy on all

cut lines in the high-level slicing tree. However, by doing this we restrict the combine direction in the

generalized slicing tree, which degrades the packing quality. To make a trade-off, we only apply TP at

the root, i.e., the first cut on the original circuit.

2.4 Whitespace-Aware Pruning

In this section, we present the Whitespace-Aware Pruning (WAP) technique, which systematically

prunes the points on the shape curve with whitespace awareness.

2.4.1 Motivation on WAP

In Figure 2.6 two subfloorplans A and B are combined into subfloorplan C. Shape curves Ca,

Cb and Cc contain various floorplan solutions of A, B and C, respectively. Because Cb has a gap

between points P2 and P3, during the combining process point P1 cannot find any point from Cb with

the matched height, and is forced to combined with P2. Due to the height difference between P1 and

P2, the resulted point P4 on curve Cc represents a layout with extra whitesapce. The bigger the gap is,

the more the whitespace is generated.

It is only an ideal situation that each point always had a matched point on another curve. Therefore,

in the hierarchical framework during the curve combining process, the whitespace will be generated and

accumulated to the top level. For a fixed-outline floorplanning problem, we have a budget/maximum

whitespace amount Wb. In order to avoid exceeding Wb, the whitespace generated in the curve combi-

nation needs to be minimized. One direct way to achieve this is to increase the number of points, such

that the sizes of gaps among the points are minimized. However, the more points we keep, the slower

the algorithm runs. This rises the question Whitespace-Aware Pruning (WAP) is trying to solve: How

4In this chapter, aspect ratio is defined as the ratio of height to width.

www.manaraa.com

18

A

H

W

Ca Cb

B

H
C c

No matched point Whitespace

P1

P4

P2

W

Gap

P3

Figure 2.6 Generation of whitespace during curve combination.

can we minimize the number of points on the shape curve, while guaranteeing that the total whitespace

would not exceed Wb?

2.4.2 Problem Formulation of WAP

WAP is to prune the points on the shape curve, while making sure that the gaps among the points are

small enough, such that we can guarantee the total whitespace would not exceed the budget Wb. WAP

is formulated as follows.

Minimize
M∑
i=1

ki

subject to
M∑
i=1

Wpi +
N∑
j=1

Wcj +Wo ≤Wb

(2.1)

In Equation 2.1, suppose there are M subpartitions and N subcircuits in the high-level slicing tree (see

Figure 2.2). Before pruning, there are ki points on shape curve i of subpartition i. During the combine

process of generating shape curve i, the introduced whitespace in subpartition i is Wpi . The whitespace

inside subcircuit j isWcj . At the root, the whitespace between the floorplan outline and the fixed outline

is Wo.

To do pruning, we calculate a pruning parameter βi for shape curve i. In subpartition i, let the

corresponding width and height of point p (1 ≤ p ≤ ki) be wip and hip. On each shape curve, the points

are sorted based on the ascending order of the height. ∆Hp is defined for point p as follows.

∆Hp = βi · hip (2.2)

www.manaraa.com

19

Within the distance of ∆Hp above point p, only the point that is the closest to hip + ∆Hp is kept, and

other points are pruned away. The intuition is that the gap within ∆Hp is small enough to guarantee

that no large whitespace will be generated. Such pruning method is applied only on every pair of child

curves of subpartitions in the high-level slicing tree, before they are combined into a parent curve. We

do not prune any point on the shape curves of subcircuits.

Now we rewrite Equation 2.1 into a form related with βi, such that by solving WAP we can get

the value of βi. Based on the above pruning, we have hip+1 ≤ (1 + βi) · hip. So approximately

hip+2 ≥ (1 + βi)hip. Thus, the relationship between the first point and point ki is:

hiki
≥ (1 + βi)

ki−1

2 hi1 ⇒ ki ≤ 2 · (
ln(hiki

/hi1)
ln(1 + βi)

) + 1 (2.3)

Because of the Flipping (see Figure 2.5 (b)), each shape curve is symmetrical based on W = H line.

So in the implementation we only keep the lower half curve. In this case, the last point ki is actually

very close 5 to W = H line, so we have

wiki
≈ hiki

⇒ hiki
≈

√
Ai (2.4)

where Ai is the area of subpartition i. It equals to the sum of total module area in subpartition i and

the accumulated whitesapce from the subcircuits at lower level. In Equation 2.3, hi1 is actually the

minimum height of the outlines on shape curve i. Suppose subpartition i contains Vi modules. The

width and height of module m are xim and yim.

hi1 = max(min(xi1, y
i
1), · · · ,min(xiVi

, yiVi
)) (2.5)

In the following part, we explain the calculation of other terms in Equation 2.1.

• Calculation of Wpi

Suppose two child subpartitions Si1 and Si2 are combined into parent subpartition Si, where the

area of Si1, Si2 and Si are Ai1, Ai2 and Ai. The pruning parameter of Si is βi. As shown in

Figure 2.7 (a), the whitespace produced in the combining process is

Wpi = Ai ·
Ai2 · βi

Ai1 +Ai2 +Ai2 · βi
(2.6)

5If ki represents a outline of a square, it is on W = H line.

www.manaraa.com

20

H

W

S1
i

S2
i

ßi

1

Wpi

W

H

(b)

S1

P1

Pd

W o

(a)

Figure 2.7 Calculation of Wpi and Wo.

Since the partitioner tries to balance the area of Si1 and Si2, we can assume Ai1 ≈ Ai2. Typically

βi � 2, so Ai1 +Ai2 +Ai2 · βi ≈ Ai. Thus,

Wpi = Ai1 · βi = Ai2 · βi = Ai ·
βi
2

(2.7)

• Calculation of Wcj

Before pruning, the shape curves of subcircuits have already been generated by EP. We choose the

minimum whitespace among all layouts of subcircuit j as the value of Wcj , so that
∑N

j=1Wcj ≥

Wb can be prevented.

• Calculation of Wo

At the root, there is extra whitespace Wo between the floorplan outline and the fixed outline.

DeFer picks at most δ points (δ = 21 by default) for Back-tracing Step. So we assume there are

δ points enclosed into the fixed outline, and the first and last points P1, Pd out of δ are on the

right and top boundary of the fixed outline (see Figure 2.7 (b)). For various points/layouts, Wo is

different. We use the one of P1 to approximate Wo. As in pruning we always keep the point that

is the closest to (1 + βi)hip, here we can assume h1
p+1 = (1 + β1)h1

p. So we have

Wo = A1 · ((1 + β1)δ−1 − 1) (2.8)

www.manaraa.com

21

From Equations 2.3, 2.4, 2.7, 2.8, Equation 2.1 can be rewritten as:

Minimize
M∑
i=1

ln(
√
Ai/h

i
1)

ln(1 + βi)

subject to
M∑
i=1

Ai ·
βi
2

+
N∑
j=1

Wcj +Wo ≤Wb

Wo = A1 · ((1 + β1)δ−1 − 1)

βi ≥ 0 i = 1, . . . ,M

(2.9)

2.4.3 Solving WAP

To solve WAP (Equation 2.9), we relax the constraint related withWb by Lagrangian relaxation. Let

λ be the non-negative Lagrange multiplier, and W ′ = Wb −
∑N

j=1Wcj −Wo.

Lλ(βi) =
M∑
i=1

ln(
√
Ai/h

i
1)

ln(1 + βi)
+ λ · (

M∑
i=1

Ai ·
βi
2
−W ′)

LRS : Minimize Lλ(βi)

subject to βi ≥ 0 i = 1, . . . ,M

LRS is the Lagrangian relaxation subproblem associated with λ. Let the function Q(λ) be the optimal

value of LRS. The Lagrangian dual problem (LDP) is defined as:

LDP : Maximize Q(λ)

subject to λ ≥ 0

As WAP is a convex problem, if λ is the optimal solution of LDP, then the optimal solution of LRS also

optimizes WAP. We differentiate Lλ(βi) based on βi and λ, respectively.

∂L

∂β1
= λA1(

1
2

+ (δ − 1) · ((1 + β1)δ−2))− ln(
√
A1/h

1
1)

(1 + β1) · ln2(1 + β1)

∂L

∂βi
=
λAi

2
− ln(

√
Ai/h

i
1)

(1 + βi) · ln2(1 + βi)
, i = 2, . . . ,M

∂L

∂λ
=

M∑
i=1

Ai ·
βi
2
−W ′

To find the “saddle point” between LRS and LDP, we first set an arbitrary λ. Once λ is fixed, ∂L
∂βi

(1 ≤ i ≤M) is a univariate function that can be solved by Bisection Method to get βi. Then βi is used

www.manaraa.com

22

to get the value of function ∂L
∂λ . If ∂L

∂λ 6= 0, we adjust λ accordingly based on Bisection Method and do

another iteration of the above calculation, until ∂L∂λ = 0.

Eventually, the pruning parameters βi returned by WAP are used to systematically prune the points

on the shape curve of each subpartition i. Best of all, we do not need to worry about the over-pruning

and degradation of the packing quality.

2.5 Enumerative Packing

In order to defer the decision on the slicing tree structure, we propose the Enumerative Packing (EP)

technique that can efficiently enumerate all possible slicing layouts among a set of modules, and finally

keep all of them into one shape curve.

2.5.1 A Naive Approach of Enumeration

In this subsection, we plot out a naive way to enumerate all slicing packing solutions among n

modules. We first enumerate all slicing tree structures and then enumerate all permutations of the

modules. Let L(n) be the number of different slicing tree structures for n modules. So we have

L(n) =
bn

2
c∑

i=1

L(n− i) · L(i) (2.10)

All slicing tree structures for 3 to 6 modules are listed in Figure 2.8. Note that we are using the

generalized slicing tree which does not differentiate the left-right order between two child subtrees. As

we can see the number of different slicing tree structures is actually very limited.

To completely explore all slicing packing solutions among nmodules, for each slicing tree structure,

different permutations of the modules should also be considered. For example in Figure 2.8, in tree T4a

four modules A, B, C and D can be mapped to leaves “1− 2− 3− 4” by the order “A−B−C −D”

or “A−C−B−D”. Obviously these two orders derive two different layouts. However, again because

the generalized slicing tree does not differentiate the left-right order between two child subtrees which

share the same parent node, for example, orders “A−B −C −D” and “B −A−C −D” are exactly

the same in T4a. After pruning such redundancy, we have 4!
2 = 12 non-redundant permutations for

mapping four modules to the four leaves in T4a. Therefore, for each slicing tree structure of n modules,

www.manaraa.com

23

3

1 2

1 2

3

4

1 2 3 4

1 2

3

4

5

6

1 2 3 4

5

6

3

1 2

4 5

6

1 2

3

4 5 6

1 2 3 4

5 6 3

1 2

6

4 5

1 2

3

4

5

1 2 3 4

5

3

1 2

4 5

T4a T4b T5a T5b T5c

T6a T6b T6c T6d T6e T6f

T3

Figure 2.8 List of different slicing tree structures.

we first enumerate all non-redundant permutations, for each one of which a shape curve is produced.

And then we merge these curves into one curve associated with each slicing tree structure. Finally, these

curves from all slicing tree structures are merged into one curve that captures all possible slicing layouts

among these nmodules. To show the amount of computations in this process, we list the number of ‘⊕’

operations for different numbers of modules in the second column of Table 2.1.

2.5.2 Enumeration by Dynamic Programming

Table 2.1 shows that the naive approach can be very expensive in both runtime and memory usage.

Alternatively, we notice that the shape curve for a set of modules (M) can be defined recursively by

Equation 2.11 below.

S(M) = MERGE
A⊂M,B=M−A

(S(A)⊕ S(B)) (2.11)

S(M) is the shape curve capturing all slicing layouts among modules in M , MERGE() is similar to the

Merging in Figure 2.5 (c), but operates on shape curves from different sets.

Based on Equation 2.11, we can use Dynamical Programming (DP) to implement the shape curve

generation. First of all, we generate the shape curve representing the outline(s) of each module. For hard

modules, there are two points6 in each curve. For soft modules, only several points from each original
6One point if the hard module is a square.

www.manaraa.com

24

Table 2.1 Comparison on # of ‘⊕’ operation.

n # of ⊕ # of ⊕
by naive approach with DP

2 1 1
3 6 6
4 45 25
5 400 90
6 4,155 301
7 49,686 966
8 674,877 3,025
9 10,295,316 9,330

10 174,729,015 28,501

curve are evenly sampled7. And then starting from the smallest subset of modules, we proceed to build

up the shape curves for the larger subsets step by step, until the shape curve S(M) is generated. Since

in this process the previously generated curves can be reused for building up the curves of larger subsets

of modules, many redundant computations are eliminated. After applying DP, the resulted numbers of

‘⊕’ operations are listed in the third column of Table 2.1.

2.5.3 Impact of EP on Packing

To control the quality of packing in EP, we can adjust the number of modules in the set. Con-

sequently the impact on packing is: The more modules a set contains, the more different slicing tree

structures we explore, the more slicing layout possibilities we have, and thus the better quality of pack-

ing we will gain at the top level.

However, if the set contains too many modules, two problems appear in EP: 1) The memory to

store results from subsets can be expensive; 2) Since the interconnections among the modules are not

considered, the wirelength may be increased. Due to these two concerns, in the first step of DeFer,

we apply hMetis to recursively cut the original circuit into multiple smaller subcircuits. This process

not only helps us to cut down the number of modules in each subcircuit, but initially optimizes the

wirelength as well. Later on as applying EP on each subcircuit, the wirelength would not become a

big concern, because this is only a locally packing exploration among a small number of modules. In

7The number of sampled points on the whole curve is determined by bAi
A0
ρc+ 4, where Ai is the area of soft block i, A0

is the total block area, and ρ is a constant (ρ = 10000 by default).

www.manaraa.com

25

other words, in the spirit of DDM, instead of deferring the decision on the slicing tree structure among

all modules in the original circuit, first we fix the high-level slicing tree structure among the subcircuits

by partitioning, and then defer the decision on the slicing tree structure among the modules within each

subcircuit.

2.5.4 High-Level EP

In the modern SoC design, the usage of Intellectual Property (IP) becomes more and more popular.

As a result, a circuit usually contains numbers of big hard macros. Due to the big size differences from

other small modules, they may produce some large whitespace. For example in Figure 2.9 (a), after

partitioning, the original circuit has been cut into four subcircuitsA, B, C andD. A contains a big hard

macro. Respecting the slicing tree structure of T4b, you may find that no matter how hard EP explores

various packing layouts within A or B, there is always a large whitespace, such as Q, in the parent

subfloorplan. This is because the high-level slicing tree structure among subcircuits has been fixed by

partitioning, so that some small subcircuit is forced to combine with some big subcircuit. Thus, to solve

this problem, we need to explore other slicing tree structures among the subcircuits.

To do so, we apply EP on a set of subfloorplans, instead of a set of modules. As the input of EP

is actually a set of shape curves, and shape curves can represent the shape of both subfloorplans and

modules, it is capable of using EP to explore the layouts among subfloorplans. In Figure 2.9 (b), EP is

applied on the four shape curves coming from subfloorplans A, B, C and D, respectively. So all slicing

tree structures (T4a and T4b) and permutations among these subfloorplans can be completely explored.

Eventually one tightly-packed layout can be chosen during Back-tracing Step (see Figure 2.9 (c)).

Before we describe the criteria of triggering high-level EP, some concepts are introduced here:

• Big gap : Based on the definition of ∆Hp in Section 2.4, if hip+1 − hip > ω · ∆Hp (ω is “Gap

Ratio”, ω = 5 by default), then we say there is a “big gap” between points p and p+1. Intuitively,

if there is a big gap, most likely it would cause serious packing problem at upper level.

• hNode : In the high-level slicing tree, the tree node or leaf node that contains big gap(s).

• hTree : A subtree of the high-level slicing tree, where the high-level EP is applied. For example,

www.manaraa.com

26

Big
Macro

T4b T4a

Big
Macro

A
B

C
D

A

B

C

D

High-Level
EP

T4aT4b

Big
Macro

A

B C D
(a) (b) (c)

Big
Macro

Q

Figure 2.9 Illustration of high-level EP.

T4b is a hTree (see Figure 2.9 (a)).

• hRoot : The root node of hTree.

High-level EP is to solve the packing problem caused by big gaps, so we need to identify the hTree

that contains big gap. First we search for the big gap through the high-level slicing tree. If any shape

curve has a big gap, then the corresponding node becomes a hNode. After identifying all hNodes, each

hNode becomes a hRoot, and the subtree whose root node is hRoot becomes a hTree. But there is one

exception: as shown in Figure 2.10, if one hTree T2 is a subtree of another hTree T1, then T2 will not

become a hTree. Eventually, each hTree contains at least one big gap, which implies critical packing

problems. Thus, for every hTree we use high-level EP to further explore the various packing layouts

among the subfloorplans, i.e., leaves of hTree. If a hTree has more than 10 leaves, we will combine

them from bottom-up until the number of leaves becomes 10.

As mentioned in Section 2.5.3, EP only solves the packing issue, which may degrade the wirelength.

Therefore, to make a trade-off we apply high-level EP only if there is no point enclosed into the fixed

outline after Combining Step. If that is the case, then we will use the above criteria to trigger the

high-level EP, and reconstruct the final shape curve.

www.manaraa.com

27

T2

T1T1

Tree node hRoot hTree

Figure 2.10 One exception of identifying hTree.

2.6 Block Swapping and Mirroring

After Back-tracing Step, the decision on subfloorplan order (left-right/top-bottom) has not been

made yet. Using such property, this section focuses on optimizing the wirelength.

In slicing structures switching the order (left-right/top-bottom) of two child subfloorplans would

not change the dimension of their parent floorplan outline, but it may actually improve the wirelength.

Basically, we adopt three techniques here: (1) Rough Swapping; (2) Detailed Swapping; (3) Mirroring.

Each of them is trying to switch the positions of two subfloorplans to improve the HPWL. Figure 2.11

illustrates the differences between Swapping and Mirroring. In Swapping we try to switch the left

and right subfloorplans, inside of which the relative positions among the modules are unchanged. In

Mirroring, instead of simply swapping two subfloorplans, we first figure out the symmetrical axis of the

outline at their parent floorplan, and then attempt to mirror them based on this axis. When calculating

the HPWL, in Rough Swapping we treat all internal modules to be at the center of their subfloorplan

outline. In Detailed Swapping we use the actual center coordinates of each module in calculating the

HPWL.

Rough Swapping is an essential step before Detailed Swapping. Without it, the results produced

by Detailed Swapping could degrade the wirelength. For example in Figure 2.12, when we try to swap

two subfloorplans A and B, two types of nets need to be considered: internal nets neti between A and

B, and external nets neto between the modules inside A or B and other outside modules or fixed pads.

Let C and D be two modules inside A and B, respectively. C and D are highly connected by netcd.

www.manaraa.com

28

Swapping Mirroring

EC E C

EC

axis

Figure 2.11 Swapping and Mirroring.

A B
C

D

neti

A B
C

D

(a) (b)

neto

netcd

neto

neto neto

neto

neto

neti

netcd

Figure 2.12 Motivation on Rough Swapping.

After Back-tracing Step, the coordinates of C and D are still unknown. If we randomly specify the

positions of C andD as shown in Figure 2.12 (a), then we may swapA andB to gain better wirelength.

Alternatively, if C and D are specified in the positions in Figure 2.12 (b), then we may not swap them.

As we can see, the randomly specified module position may mislead us to make the wrong decision. To

avoid such “noise” generated by neti in the swapping process, the best thing to do is to assume C, D

and all modules inside subfloorplans A and B are at the centers of A and B, such that the right decision

can be made based on neto.

Essentially, we first apply Rough Swapping from top-down, followed by Detailed Swapping. Fi-

nally, Mirroring is used. Note that the order between Detailed Swapping and Mirroring can be changed,

and both of them can be applied from either top-down or bottom-up.

2.7 Extension of DeFer

This section presents the different strategies of selecting the points from the final shape curve, such

that DeFer is capable of handling floorplanning problems with various objectives.

www.manaraa.com

29

W

H

(0, 0)

Compact into
fixed outline

Figure 2.13 Compacting invalid points into fixed outline.

• Fixed-Outline Floorplanning

Given the final shape curve, it is very straightforward to select the valid points enclosed into the

fixed outline. Let P be the number of such valid points. As for each selected point the swapping

process is applied to optimize the HPWL, to make a trade-off between runtime and solution

quality DeFer chooses at most δ points (δ = 21 by default) for the back-tracing. So we have

three cases:

– P > δ: Based on the geometric observation between aspect ratio and HPWL in [24], DeFer

chooses δ points where the outline aspect ratio is closed to 1;

– 0 < P ≤ δ: All P points are chosen;

– P = 0: DeFer still chooses at most δ points near the upper-right corner of the fixed outline

(see Figure 2.13), in that we attempt to compact them into the fixed outline in Compacting

Step.

• Min-Area Floorplanning

For min-area floorplanning, DeFer just needs to go through each points on the final shape curve

and find out the one with the minimum area. Because the area minimization is the only objective

here, we can even skip Swapping Step and Shifting Step to gain fast runtime. This problem

considers to be very easy for DeFer.

www.manaraa.com

30

• Min-Area and Wirelength Floorplanning

This problem uses a linear combination of area and wirelength as the cost function. Compared

with the strategy of fixed-outline floorplanning, the only difference is that we just need to choose

the δ points with the minimum area, rather than within the fixed outline.

As shown above, DeFer is very easy to be switched to handle other floorplanning problems. Be-

cause once the final shape curve is available, DeFer has provided a large amount of floorplan candidates.

Given any objective function, e.g., that used in simulated annealing, we just need to evaluate the candi-

dates, and pick the one that gives the minimum cost.

2.8 Implementation Details

Sometimes DeFer cannot pack all modules into the fixed outline. This may occur because hMetis

generates a hard-to-pack partition result, or the packing strength is not strong enough. To enhance the

robustness of DeFer, we adaptively tune some parameters and try another run.

One effective way to improve the packing quality of DeFer is to enhance the packing strength in the

high-level EP, e.g., by decreasing the gap ratio ω. Also we can use different strategies to identify hRoot

(see Figure 2.14):

(a) Each hNode becomes a hRoot.

(b) Each hNode’s grandparent tree node becomes a hRoot.

Strategy (a) is the one we mentioned in Section 2.5.4. Apparently, if we adopt strategy (a), more hTrees

will be generated, and thus the high-level EP is used more often, which leads better packing. However,

this takes longer runtime.

Another way to improve the packing quality is to balance both the area and number of modules,

rather than only the area in each partition at Partitioning Step. Thus we have two methods to set the

weight for the module.

(a) Wgt = Am

(b) Wgt = Am + 0.6 ·Ap

www.manaraa.com

31

Tree node hNode hRoot

(a) (b)

Figure 2.14 Two strategies of identifying hRoot.

S : hMetis Initial Seed, GR : Gap Ratio, HS : hRoot Strategy,
W : Weight Setting Method
**** Quit any run, once satisfy fixed-outline constraint ****
Run 1: hMetis(S), GR = 5, HS = (b), W = (a)
Run 2: hMetis(S++), GR = 5, HS = (b), W = (a)
Run 3: GR = 5, HS = (a)
Run 4: GR = 4, HS = (a)
Run 5: GR = 3, HS = (a)
Run 6: hMetis(S++), GR = 3, HS = (a), W = (b)
Run 7: hMetis(S++), GR = 3, HS = (a), W = (b)
Run 8: hMetis(S++), GR = 3, HS = (a), W = (b)

Figure 2.15 Tuned parameters at each run in DeFer.

where Wgt and Am are the weight and area for module m, Ap is the average module area in partition

p. In experiments we observe that method (b), which considers both the area and number of modules,

generates better packing results, yet sacrifices the wirelength.

Essentially, DeFer starts with the defaulted parameters for the first run. If failing to pack all modules

into the fixed outline, it will internally enhance the packing strength and try another run. By default

DeFer will try at most 8 runs. The tuned parameters for each run is listed in Figure 2.15. For Run 3–5

because they share the same partition result with Run 2, DeFer skips Partitioning Step in those runs.

Even though DeFer internally executes multiple runs, it still achieves the best runtime compared

with all other floorplanners. There are two reasons: (1) DeFer is so fast. Even it runs multiple times,

it is still much faster than other floorplanners. (2) DeFer has better packing quality. For most circuits,

www.manaraa.com

32

DeFer can satisfy the fixed-outline constraint within Run 1.

2.9 Experimental Results

In this section, we present the experimental results. All experiments were performed on a Linux

machine with Intel Core Duo8 1.86 GHz CPU and 2GB memory. The wirelength is measured by

HPWL. We compare DeFer with all the best publicly available state-of-the-art floorplanners, of which

the binaries are the latest version. For the hMetis 1.5 parameters in DeFer, NRuns = 1, UBfactor = 10,

and others are defaulted.

2.9.1 Experiments on Fixed-Outline Floorplanning

In this subsection, we compare DeFer with other fixed-outline floorplanners. On GSRC [36] and

HB [37] benchmarks, for each circuit we choose 3 different fixed-outline aspect ratios: τ = 1, 2, 3. All

I/O pads are scaled to the according boundary. On HB+ benchmarks, we use the defaulted fixed outlines

and I/O pad locations. By default every floorplanner runs 100 times for each test case, and the results are

averaged over all successful runs. As PATOMA has internally fixed the hMetis seed, and produces the

same result no matter how many times it runs, we run it only once. For other floorplanners, the initial

seed is the same as the index of each run. Parquet 4.5 runs in wirelength minimization mode. The

parameters for other floorplanners are defaulted. For each type of benchmarks, we finally normalize all

results to DeFer’s results.

I. GSRC Hard-Block Benchmarks These circuits contain 100, 200 and 300 hard modules. De-

Fer compares with six floorplanners: Parquet 4.5[20], FSA[21], IMF[23], IARFP[24], PATOMA[29]

and Capo 10.5[2]. The maximum whitespace percentage γ = 10%. The results are summarized in

Table 2.2. For every test case DeFer reaches 100% success rate. DeFer generates 27%, 14%, 14%,

3%, 25% and 5% better HPWL in 181×, 558×, 158×, 64×, 15% and 222× faster runtime than Par-

quet 4.5, FSA, IMF, IARFP, PATOMA and Capo 10.5, respectively. DeFer consistently achieves the

best HPWL and best runtime on all 9 test cases, except for only one case (n100, τ = 3) DeFer gen-

erates 0.5% worse HPWL than IARFP. But for that one DeFer is 41× faster than IARFP with 100%
8In the experiments, only one core was used.

www.manaraa.com

33

success rate. Figures 2.16(a), 2.16(b) and 2.16(c) show the layouts produced by DeFer on circuit n300

with τ = 1, 2, 3.

www.manaraa.com

34

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

AR = 1.0 HPWL = 494051

(a) n300 hard block γ = 10%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 50 100 150 200 250 300 350 400

AR = 2.0 HPWL = 539881

(b) n300 hard block γ = 10%

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300 350

AR = 3.0 HPWL = 580251

(c) n300 hard block γ = 10%

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

AR = 1.0 HPWL = 473453

(d) n300 soft block γ = 1%

Figure 2.16 Circuit n300 layouts generated by DeFer.

www.manaraa.com

35

Table 2.2 Comparison on GSRC Hard-Block benchmarks (γ = 10%).

Circuit n100 n200 n300 Normal-
Aspect Ratio 1 2 3 1 2 3 1 2 3 lized

Parquet 4.5 42% 43% 33% 26% 19% 17% 16% 16% 14% 0.25
FSA 100% 0% 0% 100% 0% 0% 0% 0% 0% 0.22
IMF 100% 100% 100% 100% 100% 100% 100% 100% 100% 1.00

Suc% IARFP 99% 100% 99% 100% 99% 63% 100% 100% 46% 0.90
PATOMA 0% 0% 0% 0% 100% 0% 100% 100% 100% 0.44
Capo 10.5 17% 17% 15% 0% 0% 2% 0% 1% 0% 0.06

DeFer 100% 100% 100% 100% 100% 100% 100% 100% 100% 1
Parquet 4.5 248652 269191 289963 467627 506946 544621 686588 725833 781556 1.27

FSA 243823 — — 414777 — — — — — 1.14
IMF 250680 251418 257935 438467 454231 482651 584578 617510 666245 1.14

HPWL IARFP 220269 230553 247283 386537 409208 433631 535850 567496 600438 1.03
PATOMA — — — — 483110 — 653711 697740 680671 1.25
Capo 10.5 227046 241789 261334 — — 444079 — 566998 — 1.05

DeFer 208650 229603 248567 372546 402155 431552 498909 538515 577209 1
Parquet 4.5 10.85 10.58 10.27 44.43 44.47 41.96 95.02 87.03 86.31 181.49

FSA 39.78 — — 202.13 — — — — — 557.74
IMF 7.65 10.82 9.29 41.21 43.59 38.71 74.74 71.48 71.72 157.91

Time(s) IARFP 4.44 4.50 4.52 16.51 15.48 14.22 29.30 29.48 30.03 64.33
PATOMA — — — — 0.25 — 0.36 0.34 0.48 1.15
Capo 10.5 122.64 125.18 160.07 — — 3054 — 8661 — 222.39

DeFer 0.13 0.11 0.11 0.25 0.23 0.22 0.35 0.33 0.33 1
#Valid Point / #Total Point 3 / 617 4 / 621 3 / 621 3 / 670 2 / 672 2 / 672 6 / 869 5 / 869 4 / 869

www.manaraa.com

36

II. GSRC Soft-Block Benchmarks These circuits contain 100, 200, and 300 soft modules. DeFer

compares with Parquet 4.5, Capo 10.5 and PATOMA, as only these floorplanners can handle soft mod-

ules. We add “-soft” to Parquet 4.5 command line. The maximum whitespace percentage γ = 1%,

which is almost zero whitespace requirements. As we can see from Table 2.3, after 100 runs both Par-

quet 4.5 and Capo 10.5 cannot pack all modules within the fixed outline. PATOMA and DeFer reach

100% success rate on every test case. Compared with PATOMA, DeFer generates 1% better wirelength

with 4× faster runtime. Figure 2.16(d) is the final layout generated by DeFer on circuit n300 with

τ = 1, which shows almost 0% whitespace is reached.

www.manaraa.com

37

Table 2.3 Comparison on GSRC Soft-Block benchmarks (γ = 1%).

Circuit n100 n200 n300 Normal-
Aspect Ratio 1 2 3 1 2 3 1 2 3 lized

Parquet 4.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
Suc% Capo 10.5 0% 0% 0% 0% 0% 0% 0% 0% 0% 0

PATOMA 100% 100% 100% 100% 100% 100% 100% 100% 100% 1.00
DeFer 100% 100% 100% 100% 100% 100% 100% 100% 100% 1

Parquet 4.5 — — — — — — — — — —
HPWL Capo 10.5 — — — — — — — — — —

PATOMA 215455 213561 230759 383330 367565 404574 524774 486351 518204 1.01
DeFer 196457 217686 235702 354885 380470 410464 476508 514764 551610 1

Parquet 4.5 — — — — — — — — — —
Time(s) Capo 10.5 — — — — — — — — — —

PATOMA 0.39 0.40 0.38 0.92 0.93 0.83 1.28 1.28 1.37 3.50
DeFer 0.09 0.09 0.09 0.18 0.19 0.19 0.78 0.96 0.97 1

#Valid Point / #Total Point 28/20392 30/20469 30/20469 16/25513 18/25493 17/25493 9/30613 10/30598 10/30603

www.manaraa.com

38

III. HB Benchmarks We compare DeFer with PATOMA and Capo 10.5 on HB benchmarks. These

circuits are generated from the IBM/ISPD98 suite containing both hard and soft modules ranging from

500 to 2000, some of which are big hard macros. Detailed statistics are listed in the second column

of Table 2.4. To get better runtime, wirelength and success rate, we run Capo 10.5 in “-SCAMPI”[38]

mode. However, Capo 10.5 still takes a long time to finish one run for each test case, so we only run it

once with the defaulted seed. To show its slowness, we also list the reported runtime for the unsuccessful

runs. From Table 2.4, we can see that DeFer does not achieve 100% success rate for only one test case,

and the success rate is 2.33× and 8.33× higher than PATOMA and Capo 10.5. Capo 10.5 crashes on

four test cases, and takes more than two days to finish one test case. Compared with PATOMA, DeFer is

28% better on average in HPWL, and 3× faster. Compared with Capo 10.5, DeFer generates as much as

72% better HPWL with even 790× faster runtime. We also run Parquet 4.5 on these circuits. However,

it is so slow that even running one test case once takes thousands of seconds. So for each test case, we

only run it once instead of 100 times, but none of the results fits into the fixed outline. Figures 2.17(a),

2.17(b) and 2.17(c) are the layouts generated by PATOMA, Capo 10.5 and DeFer on circuit ibm03 with

τ = 2.

www.manaraa.com

39

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500

HPWL = 12.94e+06

HH

H H

H

H

H

H

H H

H HHH H H

H HHH H

HHH H

H

HH H HH HH HH HHHH HH H H H HH HH H H
HH H HH HH H HHHH HH HHHH H HHH HH

HHH HH HH HHHH HH H HH HHH HH HHH
HH HHHH H HH HH HHH HH HH HHHH HH

H H H HH H H HH H HH HHH HH HH HHHH H
HH HH HH H HHHHH HH HHH HH HH H HH

HHH H HH HHHH HH HHH HHH H HH HH H

HH HH HH HH H HH HHH HHH HH H HHH H

H HH H HHH H HHHHHHH HH HH HH HH H

HH H HH HHH H HHH HH H HH HH H HH HH

H H HH H HH H H HHHH HH HH HH H H HHH

(a) by PATOMA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500

HPWL = 12.78e+06

(b) by Capo 10.5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500

HPWL = 8.81e+06

H
H

H

H

H

H

H

H

H

H

H H

H

H

H

H

H
H

H

H

H

H
H

H H
H

H

H

H

HH

H

H
H

H

H

H
H

H

H

H
H

H

H

H
H

H

H

H

H H

H

H

H
H

H

H

H

H

H

H

H
H

H

H

H

H

H

H

H

H H

H

H

H
H

H

H

H

H

H

H

H

H

H

H

H

H

H
H

H

H
H

H

H

H

H

H H

H

H

H

H

H

H

HH

H

H

H
H

H

H

H

H
H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H H

H

H

HH

H

H

H

H

H

H

H

H

H

H

H

H
H

H
H

H

H

H

H H

H

H

H
H

H

H

H

H

H

HH
HH

HH

H

H

HH

H

H

H

H

H H

H

H

H

H
H

H

H

H

H
H

H
H

H

H

H

H

H
H

H

H

H
H

H

H
H

H

H

H

HH

H

H
H

H

H

H

H

H

H

H

H

H

H

H

H

H

HH

H

H

H

H

H
H

H

H

H
H

H

H
H

H
H

H

H
H

H
H

H

H
HH

HH

H

H
H

H
H

H
H

H
H

H

H

HH

H
H

H

H

H

H
HH

H
HH

H

H

H

H

H

H

H

(c) by DeFer

Figure 2.17 Circuit ibm03 layouts generated by PATOMA, Capo 10.5 and DeFer (γ = 10% and
τ = 2).

www.manaraa.com

40

Table 2.4 Comparison on HB benchmarks (γ = 10%).

Circuit #Soft./#Hard. Aspect PATOMA[29] Capo 10.5[2] DeFer #Valid Point
/#Net. Ratio Suc% WL(e6) Time(s) Suc% WL(e6) Time(s) Suc% WL(e6) Time(s) / #Total Point

665 1 100% 2.84 7.04 0% — 183 100% 2.66 1.44 16 / 1571
ibm01 /246 2 0% — — 0% — 977 100% 2.70 1.28 11 / 1482

/4236 3 100% 5.60 1.66 0% — 696 100% 2.82 1.30 12 / 1490
1200 1 0% — — 0% — 456 85% 6.55 14.48 6 / 2348

ibm02 /271 2 0% — — — — > 2 days 100% 6.21 3.33 7 / 1161
/7652 3 0% — — 0% — 3726 100% 6.29 3.52 10 / 1144
999 1 100% 12.59 5.42 100% 10.70 566 100% 8.77 3.60 59 / 2684

ibm03 /290 2 100% 12.94 5.58 100% 12.01 1874 100% 8.89 3.49 40 / 2503
/7956 3 0% — — 0% — 2028 100% 8.99 3.59 44 / 2630
1289 1 0% — — 0% — 2752 100% 8.94 3.04 4 / 1492

ibm04 /295 2 0% — — 100% 17.77 5253 100% 8.96 3.12 9 / 1514
/10055 3 0% — — 100% 16.32 2262 100% 9.64 6.31 12 / 2685

564 1 100% 12.27 14.21 0% — 458 100% 12.61 3.55 46 / 3369
ibm05 /0 2 100% 12.60 13.68 0% — 358 100% 12.73 3.52 46 / 3371

/7887 3 100% 13.19 13.85 0% — 411 100% 13.45 3.53 46 / 3371
571 1 0% — — 0% — 235 100% 7.87 3.66 53 / 2187

ibm06 /178 2 0% — — 0% — 592 100% 7.76 3.66 41 / 2235
/7211 3 0% — — 0% — 2831 100% 8.91 3.60 36 / 2196
829 1 0% — — 0% — 1094 100% 13.81 3.87 12 / 1527

ibm07 /291 2 100% 24.64 7.85 0% — 1270 100% 13.91 4.48 22 / 1625
/11109 3 100% 24.34 8.68 0% — 2274 100% 14.32 4.26 18 / 1590

968 1 0% — — 0% — 2527 100% 13.95 5.44 15 / 1333
ibm08 /301 2 0% — — 0% — 1110 100% 14.16 5.40 17 / 1290

/11536 3 0% — — 0% — 1958 100% 14.43 5.55 19 / 1309
860 1 0% — — 0% — 2273 100% 12.85 2.60 3 / 1495

ibm09 /253 2 0% — — 0% — 2670 100% 12.57 3.77 17 / 1486
/11008 3 0% — — 100% 34.48 6652 100% 12.98 3.54 14 / 1486

www.manaraa.com

41

Table 2.4 (Continued)

Comparison on HB benchmarks (γ = 10%).
Circuit #Soft./#Hard. Aspect PATOMA[29] Capo 10.5[2] DeFer #Valid Point

/#Net. Ratio Suc% WL(e6) Time(s) Suc% WL(e6) Time(s) Suc% WL(e6) Time(s) / #Total Point

809 1 100% 48.47 21.71 0% — 2353 100% 33.25 11.63 9 / 2576
ibm10 /786 2 0% — — crashed crashed crashed 100% 34.23 18.00 14 / 2897

/16334 3 0% — — 100% 53.64 2014 100% 36.59 16.52 9 / 2725
1124 1 100% 20.87 33.87 0% — 8070 100% 21.99 4.84 12 / 2218

ibm11 /373 2 0% — — 0% — 4732 100% 22.13 4.96 8 / 2207
/16985 3 0% — — 0% — 2245 100% 22.83 4.67 7 / 2174

582 1 0% — — 0% — 3085 100% 29.72 10.95 20 / 2909
ibm12 /651 2 0% — — 0% — 864 100% 31.53 7.71 18 / 3011

/11873 3 0% — — 0% — 19952 100% 32.16 4.59 8 / 1957
530 1 0% — — 0% — 3401 100% 25.92 6.03 12 / 2553

ibm13 /424 2 100% 43.81 9.84 0% — 3662 100% 25.46 3.79 10 / 2048
/14202 3 0% — — 0% — 3201 100% 26.47 3.83 8 / 2095
1021 1 100% 71.87 23.59 0% — 4253 100% 50.83 9.69 30 / 2976

ibm14 /614 2 100% 55.99 35.65 0% — 10373 100% 51.67 9.70 34 / 2971
/26675 3 100% 61.65 35.12 0% — 4976 100% 53.71 9.70 36 / 2971
1019 1 0% — — 0% — 3634 100% 64.18 9.71 25 / 1651

ibm15 /393 2 0% — — 0% — 6827 100% 63.17 9.13 19 / 1580
/28270 3 0% — — 0% — 2902 100% 66.06 9.46 20 / 1623

633 1 0% — — crashed crashed crashed 100% 56.88 16.79 18 / 3823
ibm16 /458 2 100% 88.33 16.55 0% — 8928 100% 58.55 14.55 24 / 4833

/21013 3 100% 98.77 22.94 0% — 11675 100% 59.91 12.84 18 / 4093
682 1 100% 102.45 41.75 crashed crashed crashed 100% 95.92 10.43 32 / 3253

ibm17 /760 2 100% 96.46 46.63 0% — 2250 100% 95.48 10.41 27 / 3252
/30556 3 100% 98.18 42.45 crashed crashed crashed 100% 100.82 10.42 29 / 3252

658 1 100% 50.28 38.24 0% — 1083 100% 49.12 7.93 42 / 3106
ibm18 /285 2 100% 49.74 39.15 0% — 4630 100% 49.29 7.97 41 / 3128

/21191 3 100% 52.26 36.97 0% — 5262 100% 51.39 7.97 41 / 3128
Normalized 0.43 1.28 3.28 0.12 1.72 789.79 1 1 1

www.manaraa.com

42

IV. HB+ Benchmarks DeFer compares with PATOMA and Capo 10.5 on HB+ benchmarks [38].

These circuits are generated from HB benchmarks, while the biggest hard macro is inflated by 100%

and the area of remaining soft macros are reduced to preserve the total cell area. As a result, the circuits

become even harder to handle. Due to the same reason, we set Capo 10.5 to “-SCAMPI” mode, and run

it only once. The results are shown in Table 2.5. DeFer achieves the 100% success rate on all circuits,

which is 1.89× better than PATOMA. Capo 10.5 also achieves 100% success rate, expect for one circuit

it takes more than two days to finish. In terms of the HPWL comparison, DeFer is 7% and 19% better

than PATOMA and Capo 10.5. DeFer is also 5× and 47× faster than PATOMA and Capo 10.5.

Both HB and HB+ benchmarks are considered to be very hard to handle, because these circuits not

only contain both hard and soft modules, but also big hard macros. As far as we know, only the above

floorplanners can handle these circuits. Obviously, DeFer reaches the best result. We also monitor the

memory usage of DeFer on such large-scale circuits, and observe that the peak memory usage in DeFer

is only 53 MB.

www.manaraa.com

43

Table 2.5 Comparison on HB+ benchmarks.

Circuit White- Aspect PATOMA[29] Capo 10.5[2] DeFer #Valid Point
space γ Ratio Suc% WL(e6) Time(s) Suc% WL(e6) Time(s) Suc% WL(e6) Time(s) / #Total Point

ibm01 26% 1 100% 4.67 4.44 — — > 2 days 100% 3.09 1.84 120 / 10860
ibm02 25% 1 0% — — 100% 7.86 124 100% 6.17 15.28 45 / 3380
ibm03 30% 1 0% — — 100% 12.75 343 100% 9.19 4.01 102 / 5020
ibm04 25% 1 0% — — 100% 12.03 147 100% 10.26 14.15 63 / 5170
ibm06 25% 1 0% — — 100% 10.09 155 100% 8.78 5.01 84 / 3560
ibm07 25% 1 100% 16.38 23.41 100% 16.41 99 100% 15.48 4.55 12 / 3780
ibm08 26% 1 0% — — 100% 18.29 284 100% 18.73 19.25 106 / 5070
ibm09 25% 1 100% 16.62 25.45 100% 17.85 100 100% 16.66 4.22 12 / 3070
ibm10 20% 1 0% — — 100% 81.27 1685 100% 45.12 6.32 27 / 6880
ibm11 25% 1 100% 25.86 38.72 100% 28.26 149 100% 26.99 7.07 19 / 4150
ibm12 26% 1 0% — — 100% 52.46 126 100% 50.17 5.54 69 / 6880
ibm13 25% 1 100% 36.74 29.08 100% 40.22 299 100% 35.51 5.85 15 / 3860
ibm14 25% 1 100% 68.30 51.79 100% 73.89 410 100% 64.50 12.01 36 / 7870
ibm15 25% 1 0% — — 100% 92.79 474 100% 84.29 14.66 182 / 9900
ibm16 25% 1 100% 95.97 47.14 100% 153.02 595 100% 98.66 8.08 10 / 5770
ibm17 25% 1 100% 142.41 65.06 100% 146.03 440 100% 144.56 14.70 41 / 9540
ibm18 25% 1 100% 73.76 47.71 100% 75.92 224 100% 71.86 11.30 44 / 9160

Normalized 0.53 1.07 4.76 1.00 1.19 46.66 1 1 1

www.manaraa.com

44

V. Analysis of Points in DeFer In Tables 2.2–2.5, for each test case we list the number of valid

points (#VP) within the fixed outline and the total number of points (#FP) in the final shape curve. Both

#VP and #FP are averaged over all successful runs. We have three observations: (1) As the circuit size

grows, #FP increases. (2) For the same circuit with various τ , ideally #FP should be the same. But

they are actually different in some test cases. It is because high-level EP reconstructed the final shape

curve for some hard-to-pack instances. As you can see high-level EP can significantly increase #FP,

e.g., ibm12 in Table 2.4, which means it improves packing quite effectively. (3) Sometimes while other

algorithms cannot satisfy the fixed-outline constraint, #VP of DeFer is more than 100, e.g., ibm15 in

Table 2.5. This shows DeFer’s superior packing ability.

2.9.2 Experiments on Classical Outline-Free Floorplanning

For the classical outline-free floorplanning problem, as far as we know, only Parquet 4.5 can handle

GSRC benchmarks, so we compare it with DeFer on GSRC Hard-Block benchmarks. The results are

averaged over 100 runs. The objective function is a linear combination of the HPWL and area, which

are equally weighted. We add “-minWL” to the Parquet 4.5 command line. As shown in Table 2.6,

DeFer produces 32% less whitespace than Parquet 4.5, with 18% less wirelength. Overall, DeFer is

12% better in the total cost, and 76× faster than Parquet 4.5.

www.manaraa.com

45

Table 2.6 Comparison on linear combination of HPWL and area.

Circuit Parquet 4.5 [20] DeFer
Area Whitespace% HPWL Area+HPWL Time(s) Area Whitespace% HPWL Area+HPWL Time(s)

n100 194425 8.31% 235070 429495 13.66 191164 6.50% 209785 400949 0.33
n200 191191 8.82% 438584 629775 54.84 187734 6.85% 374676 562410 0.74
n300 298540 9.29% 628422 926962 108.70 291385 6.67% 503311 794696 0.96

Normalized 1.02 1.32 1.18 1.12 76.24 1 1 1 1 1

Table 2.7 Estimation on contributions of main techniques and runtime breakdown in DeFer.

Algorithm Step Partitioning Combining Back-tracing Swapping Compacting Shifting
Main Technique Min-Cut TP EP Combination — Rough Detailed Mirroring Compaction Shifting

Wirelength Improvement Major Minor — — — Major Minor Minor Minor Minor
Packing Improvement Minor — Major Minor — — — — Minor —

GSRC Hard 29% 63% 0% 8% 0% 0%
Runtime GSRC Soft 35% 37% 0% 28% 0% 0%

Breakdown HB 52% 4% 0% 44% 0% 0%
HB+ 46% 3% 0% 51% 0% 0%

www.manaraa.com

46

2.10 Conclusion

As the earliest stage of VLSI physical design, floorplanning has numerous impacts on the final

performance of ICs. In this chapter, we have proposed a fast, high-quality, scalable and non-stochastic

fixed-outline floorplanner DeFer.

Based on the principle of Deferred Decision Making, DeFer outperforms all other state-of-the-art

floorplanners in every aspect. It is hard to accurately calculate how much each technique in DeFer

contributes to the overall significant improvement. But we do have a rough estimation in Table 2.7, in

which we also show the runtime breakdown of DeFer for each set of benchmarks. Note that, the DDM

idea is the soul of DeFer. Without it, those techniques cannot be integrated in such a nice manner and

produce promising results.

Such a high-quality and efficient floorplanner is expected to handle the increasing complexity of

modern mixed-size designs. The source code of DeFer and all benchmarks are publicly available at [39].

www.manaraa.com

47

CHAPTER 3 General Floorplan-Guided Placement

A thought is often original, though you have uttered it a hundred times.

— Oliver Wendell Holmes

3.1 Introduction

As mentioned in Chapter 1, in today’s VLSI design methodology mixed-size placement, as opposed

to standard-cell placement, is a much more complicated problem to solve. In this chapter, based on the

new algorithm flow proposed in Figure 1.3, we implement a robust, efficient and high-quality floorplan-

guided placer called FLOP. It can effectively handle mixed-size placement with all movable objects

including both macros and standard cells. FLOP can also optimize the macro orientation with respect

to both packing and wirelength optimization.

To show the effectiveness of FLOP, we derive the Modern Mixed-Size (MMS) placement bench-

marks from the original ISPD05/06 placement benchmarks [40, 41]. These new circuits can represent

the challenges of modern large-scale mixed-size placement.

The rest of this chapter is organized as follows. Section 3.2 describes the algorithm overview.

Section 3.3 introduces the block formation and floorplanning steps. Section 3.4 presents the wirelength-

driven shifting technique. Section 3.5 describes the incremental placement algorithm. Section 3.6

describes the MMS benchmarks. Section 3.7 presents the experimental results. Finally this paper ends

with the conclusion and future work.

3.2 Overview of FLOP

FLOP follows the same algorithm flow as shown in Figure 1.3.

www.manaraa.com

48

1. Block Formation: The block formation step is done by recursive partitioning of the input circuit.

After partitioning, small objects in each partition are clustered into a soft block and each big

macro becomes one single hard block.

2. Floorplanning: In the floorplanning step, FLOP adopts a min-cut based fixed-outline floorplan-

ner similar to DeFer. In DeFer, a hierarchy of the blocks needs to be derived using recursive

partitioning. Because such a hierarchy has already been generated during the block formation

step, it will be passed down and will not be generated again. Another way to look at the flow of

FLOP is that the block formation step is merged into the floorplanning step as the first step of

DeFer.

3. Wirelength-Driven Shifting: We formulate the wirelength-driven shifting problem as a linear

programming (LP) problem. Therefore, we can find the optimal block position in terms of the

HPWL minimization among the blocks. In the LP-based shifting we only ignore the local netlist

among small objects within each soft block.

4. Incremental Placement: Because analytical placers have the best capability in placing a large

number of small objects, we use an analytical placer as the engine in the incremental placement

step.

3.3 Block Formation and Floorplanning

A high-quality and non-stochastic fixed-outline floorplanner DeFer was presented in Chapter 2. It

has been shown that, compared with other fixed-outline floorplanners, DeFer achieves the best success

rate, the best wirelength and the best runtime on average.

Here is a brief description of the algorithm flow of DeFer: Firstly the original circuit is partitioned

into several subcircuits, each of which contains at most 10 objects. After that, a high-level slicing tree

structure is built up. Secondly, for each subcircuit an associated shape curve is generated to represent

all possible slicing layouts within the subcircuit. Thirdly, the shape curves are combined from bottom-

up following the high-level slicing tree. In the final shape curve at the root the points within the fixed

outline are chosen for further HPWL optimization. At the end DeFer outputs a final layout.

www.manaraa.com

49

In FLOP, we use DeFer in the floorplanning step. To make it more robust and efficient for mixed-

size placement, we propose some new techniques and strategies, which are described in Sections 3.3.1-

3.3.3.

3.3.1 Usage of Exact Net Model

We use the exact net model in [23] to improve the HPWL in partitioning. By applying this net model

in partitioning, the cut value becomes exactly the same as the placed HPWL, so that the partitioner can

directly minimize the HPWL instead of interconnections between two partitions. In FLOP at the first β

levels of the high-level slicing tree (β = 3 by default), we apply two cuts on the original partition. One

is horizontal cut, and another is vertical cut. We compare these two cuts and pick the one with less cost,

i.e. HPWL.

However, for a vertical/horizontal cut, the cut value returned by the net model is only equal the

horizontal/vertical component of HPWL. So for two cuts with different directions, it is incorrect to

decide a better cut direction based on the two cut values generated by these two cuts. The authors

in [23] avoided such comparison by fixing the cut direction based on the dimension of the partition

region. Nevertheless, this may potentially lose the better cut direction. Here we propose a simple

heuristic to solve the cut value comparison between the cuts from two different directions.

Suppose K is the total number of nets in one partition that we are going to cut. For the horizontal

cut (H-cut), LxHi
/LyHi

is the horizontal/vertical component of the HPWL of net i, the same as LxVi
and

LyVi
for the vertical cut (V-cut). So the total HPWL of the K nets in this partition are:

For H-cut : LH =
K∑
i=1

LxHi
+

K∑
i=1

LyHi

For V-cut : LV =
K∑
i=1

LxVi
+

K∑
i=1

LyVi

Thus, the correct way to make the comparison between H-cut and V-cut should be:

if LH ≥ LV ⇒ V-cut is better

if LH < LV ⇒ H-cut is better

As the net model only returns
∑K

i=1 L
y
Hi

for H-cut, and
∑K

i=1 L
x
Vi

for V-cut, we need find a way to

estimate
∑K

i=1 L
x
Hi

and
∑K

i=1 L
y
Vi

. Let the aspect ratio (i.e. height/width) of the partition region be γ.

www.manaraa.com

50

When K becomes very big, based on statistics we can have the following assumption:

K∑
i=1

LyHi

K∑
i=1

LxHi

≈

K∑
i=1

LyVi

K∑
i=1

LxVi

≈ γ

Thus,

if LyH ≥ LxV · γ ⇒ V-cut is better

if LyH < LxV · γ ⇒ H-cut is better

Two reasons prevent us from applying the net model in lower levels (> β): 1) As partitioning

goes on, K becomes smaller and smaller, which makes the approximation of
∑K

i=1 L
x
Hi

and
∑K

i=1 L
y
Vi

inaccurate; 2) Using the net model, we restrict the combine direction in the Generalized Slicing Tree in

DeFer, which hurts the packing quality. To make a trade-off we only apply the net model in the first β

levels.

3.3.2 Block Formation

As mentioned earlier, since DeFer starts with a min-cut partitioning, FLOP combines the block for-

mation step with the floorplanning step. After the original circuit is partitioned into multiple subcircuits,

in each subcircuit we treat a big macro as a hard block, and cluster all small objects (i.e. small macros

and standard cells) into a soft block.

However, in DeFer the partitioning will not stop until each subcircuit contains less than or equal to

10 objects. If the same stopping criteria is used in FLOP, then most subcircuits will contain at most

10 standard cells, which means by clustering we can only cut down the problem size by at most 90%.

Nevertheless, for a typical placement problem with millions of objects, the resulted circuit size is still

too big for the floorplanning algorithm. So here we propose a more suitable stopping criteria. Let Ao

be the total area of all objects in the design. In one partition there are Np objects of which the total area

is Ap, α is the area bound (α = 0.15% by default). We will stop cutting this partition, if either one of

the following conditions is satisfied: 1) Ap

Ao
≤ α; 2) Np ≤ 10.

www.manaraa.com

51

A

H

W

AA

H

W

A

H

W

H/W=3

H/W=1/3

(a) (b) (c)

Figure 3.1 Generation of shape curves for blocks.

3.3.3 Generation of Shape Curve for Blocks

To capture the shape of the blocks, we generate an associated shape curve for each block. For

the hard block if a macro cannot be rotated, only one point representing the user-specified rotation is

generated (see Figure 3.1 (a)). Otherwise two points representing two different rotations are generated

(see Figure 3.1 (b)). For the soft block we bound its aspect ratio from 1/3 to 3, and sample multiple

points on the shape curve to represent its shape (see Figure 3.1 (c)). Considering the target density

constraint in the placement, we add some white space in each soft block. In some sense, we “inflate”

the soft block based on the target density.

A′si
=
Asi

TD
× (max((TD − 0.93), 0)× 0.5 + 1) (3.1)

In Equation 3.1, for soft block i, A′si
is the “inflated area”, Asi is the total area of objects within soft

block i, and TD is the target density. Based on this formula, if the target density is more than 93%, we

add some white space into the soft block. The purpose is to leave some space for the analytical placer

to place the small objects.

3.4 Wirelength-Driven Shifting

In FLOP the wirelength-driven shifting process is formulated as a linear programming (LP) prob-

lem, which is the same as in [42]. We use the contour structure [43] to derive the horizontal and vertical

non-overlapping constraints among the blocks.

The LP-based shifting is an essential part in FLOP. In terms of the HPWL minimization it can find

the optimal position for each block, and basically provides a globally optimized layout for the analytical

www.manaraa.com

52

placer. Since the LP-based shifting optimizes the HPWL at the floorplan level, it only ignores the local

nets among the small objects within each soft block. The smaller the soft block is, the less nets it

ignores, and the better the HPWL we will get at last. However, if the soft blocks become too small,

numerous nets will be considered in the shifting. This would slow down the whole algorithm. Because

of this, in the partition stopping criteria we set an area bound α, so that the soft blocks would not

become too small. On the other hand, we only need the shifting step to generate a globally good layout.

Regarding the local nets within the soft blocks, we believe the following analytical placer can handle

them very efficiently and effectively.

3.5 Incremental Placement

As mentioned before, the output of the wirelength-driven shifting step is a layout with legal, non-

overlapping locations for the big macros. These big macros are then fixed in place to prevent further

movement during any subsequent steps. But, there are multiple “soft blocks” in the layout, each con-

taining numerous “small objects”. These small objects are a combination of standard cells and small

macros. The floorplanning step assigns these small objects to the center of the corresponding soft block.

In this respect, the placement step has two key tasks: 1) Spread the small objects over the placement

region and obtain a final overlap free placement among all objects; 2) Use the initial locations of the

small objects as obtained by the shifting step.

To satisfy these two tasks, we use an efficient analytical incremental placement algorithm. The

incremental placement flow is as shown in Figure 3.2.

3.6 MMS Benchmarks

The only publicly available benchmarks for mixed-size designs are ISPD02 and ICCAD04 IBM-

MS [10, 46] that are derived from ISPD98 placement benchmarks. As pointed out in [40], these circuits

can no longer be representative of modern VLSI physical design. To continue driving the progress

of physical design for the academic community, two suites of placement benchmarks [40, 41] have

been released recently. They are directly derived from modern industrial ASICs design. Unfortunately,

however, in the original circuits most macros have been fixed due to the difficulty of handling movable

www.manaraa.com

53

1: Phase 0: Physical and Netlist based clustering
2: initial objects← number of small objects
3: set locations of small objects to center of their soft blocks
4: while number of clusters > target number of clusters do
5: cluster netlist using Best-choice clustering [44]
6: use physical locations of small objects in clustering score
7: set cluster location← center of gravity of the objects within cluster
8: end while
9: end

10: Phase 1: Coarse global placement
11: generate “fixing forces” for clusters based on their initial locations
12: solve initial quadratic program (QP)
13: repeat
14: perform Cell Shifting [3] on coarse-grain clusters
15: add spreading forces to QP formulation
16: solve the quadratic program
17: until placement is roughly even
18: repeat
19: perform Iterative Local Refinement [3] on coarse-grain clusters
20: until placement is quite even
21: uncluster movable macro-blocks
22: legalize and fix movable macro-blocks
23: end
24: Phase 2: Refinement of fine-grain clusters
25: while number of clusters < 0.5*number of small objects do
26: uncluster netlist
27: end while
28: perform Iterative Local Refinement on fine-grain clusters
29: end
30: Phase 3: Refinement of flat netlist
31: while number of clusters < number of small objects do
32: uncluster netlist
33: end while
34: perform Iterative Local Refinement on flat netlist
35: end
36: Phase 4: Legalization and detailed placement
37: Legalize the standard cells in the presence of fixed macros
38: Perform detailed placement [45] to further improve wirelength
39: end

Figure 3.2 Algorithm of analytical incremental placement.

www.manaraa.com

54

macros for the existing placers. The authors in [8, 9] freed all fixed objects in ISPD06 benchmarks

and created new mixed-size placement circuits. But seven out of eight circuits do not have any fixed

I/O objects, which is not realistic in the real designs. In order to recover the complexities of modern

mixed-size designs, we modify the original ISPD05/06 benchmarks and derive the Modern Mixed-Size

(MMS) placement benchmarks (see Table 3.1).

www.manaraa.com

55

Table 3.1 Statistics of Modern Mixed-Size placement benchmarks.

Circuit #Objects #Movable Objects #Standard Cells #Macros #Fixed I/O Objects #Net #Net Pins Target Density% λ

adaptec1 211447 210967 210904 63 480 221142 944053 100 70
adaptec2 255023 254584 254457 127 439 266009 1069482 100 160
adaptec3 451650 450985 450927 58 665 466758 1875039 100 650
adaptec4 496054 494785 494716 69 1260 515951 1912420 100 460
bigblue1 278164 277636 277604 32 528 284479 1144691 100 120
bigblue2 557866 535741 534782 959 22125 577235 2122282 100 30
bigblue3 1096812 1095583 1093034 2549 1229 1123170 3833218 100 470
bigblue4 2177353 2169382 2169183 199 7970 2229886 8900078 100 550
adaptec5 843128 842558 842482 76 570 867798 3493147 50 440
newblue1 330474 330137 330073 64 337 338901 1244342 80 2000
newblue2 441516 440264 436516 3748 1252 465219 1773855 90 190
newblue3 494011 482884 482833 51 11127 552199 1929892 80 170
newblue4 646139 642798 642717 81 3341 637051 2499178 50 400
newblue5 1233058 1228268 1228177 91 4790 1284251 4957843 50 570
newblue6 1255039 1248224 1248150 74 6815 1288443 5307594 80 650
newblue7 2507954 2481533 2481372 161 26421 2636820 10104920 80 650

www.manaraa.com

56

Essentially, we make the following changes on the original circuits.

I. Macros are freed from the original positions. In the GSRC Bookshelf format that the original

benchmarks use, both fixed macros and fixed I/O objects are treated as fixed objects. There is no extra

specification to differentiate them. So we have to distinguish them only based on the size differences.

Basically, if the area of one fixed object is more than λ× the average area of the whole circuit, we

will recognize it as a macro. Otherwise, it is a fixed I/O object. Because for each circuit the average

area is different, we need to use a different λ (see the last column in Table 3.1) to decide a reasonable

number and suitable threshold size for the macros. There is one exception: in both circuits bigblue2

and bigblue4, there is one macro that does not connect with any other objects. If this macro is freed, it

may cause some trouble for quadratic-based analytical placers. So we keep it fixed. Since this macro is

also very small compared with other macros, it would not affect circuit property.

II. The sizes of all I/O objects are set to zero. In MMS benchmarks there are two types of

I/Os: perimeter I/Os around the chip boundary and area-array I/Os spreading across the chip region.

Generally, the area-array I/Os are allowed to be overlapped with other movable objects in the design.

But existing placers treat all fixed I/Os as fixed objects, so that their algorithms internally do not allow

such overlaps during the legalization. Since the macros have already been freed in MMS benchmarks,

other placers should ignore the overlaps between fixed I/O objects and movable objects, and concentrate

on the legalization of movable objects. As we cannot change the code of other placers, one simple way

to enforce this is to set the sizes of all I/O objects to zero.

The target density constraints are the same as the original circuits. The same scoring function [41]

is used to get the scaled HPWL. But since the macros are movable in MMS, we need to modify the

script used in [41] to get the “scaled overflow factor”. The modification being: Any movable macro

that has a width or height greater than the bin dimension used for scaled overflow calculation, is now

treated as a fixed macro during scaled overflow calculation. Note that, this was the method employed

by the original script on newblue1, which is the only design that has big movable macros in the original

circuits. It is required to treat big movable macros as fixed, otherwise we will get an incorrect picture

of the placement density.

We have discussed the MMS benchmarks setup with the authors in [40, 41]. To keep the original

www.manaraa.com

57

circuit properties as much as possible, the above changes are the best we can do without accessing the

original industrial data of the circuits. The MMS benchmarks are publicly available at [39].

3.7 Experimental Results

All experiments were performed on a Linux machine with AMD Opteron 2.6 GHz CPU and 8GB

memory. We use hMetis2.0 [47] as the partitioner and QSopt [48] as the LP solver. The seed of

hMetis2.0 is set to 5. Essentially, we set up four experiments.

I. To test the capability of handling the complexities in modern large-scale mixed-size placement,

we compare FLOP with five state-of-the-art mixed-size placers: APlace2, NTUplace3, mPL6, Capo10.5

and Kraftwerk on MMS benchmarks. Before the experiments, we contacted the developers of each

placer above, and they provided us their best-available binary for MMS benchmarks. In Table 3.2, for

the ISPD06 circuits (adaptec5 - newblue7) the reported HPWL is the scaled HPWL. FLOP is the default

mode of FLOP with all macros rotatable, and FLOP-NR restricts the rotation on every macro. APlace2

crashed on every circuit, so we do not show its results. For the default mode, FLOP generates 8%, 2%,

44% and 26% better HPWL compared with NTUplace3, mPL6, Capo10.5 and Kraftwerk, respectively.

About the runtime, FLOP is 6× and 3× faster than Capo10.5 and mPL6. Also FLOP achieves legal

solution on every circuit. Compared with FLOP-NR, FLOP generates 4% better HPWL by rotating the

macros.

II. To show the importance of respecting the initial positions of small objects in the incremental

placement step, we generate the results of FLOP-NI, which discards the such information and places

all small objects from scratch. As shown in Table 3.2, FLOP-NI produces 5% worse HPWL and 20%

slower than FLOP.

III. We compare FLOP with three leading macro placers, CG, MPT and XDP. Due to the IP issues,

we cannot get their binaries. But the authors sent us their benchmarks used in [9]. So the other placers’

results in Table 3.3 are cited from [9]. These benchmarks allow the rotation of macros, and do not

consider the target density. Also only one circuit has boundary I/Os, others do not have any I/Os at all.

As we can see, FLOP achieves 1%, 12%, 7% and 14% better HPWL compared with CG, MPT, XDP

and NTUplace3, respectively. We also use NTUplace3 to substitute the incremental placer in FLOP,

www.manaraa.com

58

34.75%

32.40%

32.85%

Fixed-outline Floorplanning
LP-based Shifting
Incremental Placement

Figure 3.3 Runtime breakdown of FLOP.

The results show that FLOP+NTUplace3 is 7% worse than FLOP. Note that, NTUplace3 is not an

incremental placers, as shown earlier this will greatly degrade the results generated by FLOP.

IV. Here we show the runtime component of each step in FLOP (see Figure 3.3). We can see that

the LP-based shifting takes almost 1/3 of the total runtime. This is the main bottle neck of the runtime

in FLOP.

www.manaraa.com

59

Table 3.2 Comparison with mixed-size placers on MMS benchmarks (* compared with scaled HPWL),
HPWL(×10e6).

Circuit NTUplace3[7] mPL6[6] Capo10.5[2] Kraftwerk[49] FLOP-NR FLOP-NI FLOP
HPWL Time(s) HPWL Time(s) HPWL Time(s) HPWL Time(s) HPWL Time(s) HPWL Time(s) HPWL Time(s)

adaptec1 80.45 630 77.84 2404 84.77 5567 86.73 285 77.18 722 85.27 961 76.83 824
adaptec2 136.46 1960 88.40 2870 92.61 7373 108.61 408 87.17 1219 86.72 1394 84.14 1192
adaptec3 illegal – 180.64 5983 202.37 16973 272.76 773 182.21 1943 173.07 2394 175.99 2116
adaptec4 177.23 1896 162.02 5971 202.38 17469 260.96 962 166.55 2398 175.67 2753 161.68 2427
bigblue1 95.11 955 99.36 2829 112.58 8458 130.78 348 95.45 1776 98.91 2245 94.92 2007
bigblue2 144.42 1661 144.37 12202 149.54 17647 abort – 150.66 2373 162.40 3830 153.02 3110
bigblue3 illegal – 319.63 9548 583.37 69921 417.73 2369 372.79 7037 394.75 6959 346.24 5437
bigblue4 764.72 8182 804.00 23868 915.73 109785 969.03 6000 807.53 13816 839.53 22788 777.84 19671

adaptec5* abort – 376.30 22636 565.88 23957 402.21 1653 381.83 5048 385.07 4067 357.83 3293
newblue1* 60.73 875 66.93 3171 110.54 3133 76.22 481 73.36 1368 71.69 1302 67.97 1012
newblue2* abort – 179.18 6044 303.25 8156 272.67 615 231.94 2646 190.50 2998 187.40 2414
newblue3* abort – 415.86 17623 1282.19 73339 374.54 578 344.71 2336 355.07 3389 345.99 2757
newblue4* abort – 277.69 9732 300.69 6589 291.45 1266 256.91 2575 268.46 3579 256.54 2455
newblue5* abort – 515.49 24806 570.32 16548 503.13 2639 516.71 8801 536.38 11010 510.83 9163
newblue6* abort – 482.44 13112 609.16 18076 651.34 2726 502.24 9450 506.99 11195 493.64 9563
newblue7* abort – 1038.66 31680 1481.45 43386 illegal – 1113.07 18765 1101.07 26979 1078.18 25104

Norm 1.08 0.78 1.02 2.95 1.44 6.56 1.26 0.35 1.04 1.00 1.05 1.17 1 1

www.manaraa.com

60

Table 3.3 Comparison with macro placers on modified ISPD06 benchmarks with default chip utiliza-
tion, HPWL(×10e7).

Circuit CG[9]+NTUplace3 MPT[8]+NTUplace3 XDP[50]+NTUplace3 NTUplace3 FLOP+NTUplace3 FLOP
HPWL HPWL HPWL HPWL HPWL HPWL

adaptec5 29.46 31.01 31.08 29.03 27.94 27.36
newblue1 6.23 6.50 6.32 6.06 7.41 7.32
newblue2 18.89 22.60 18.90 28.09 25.38 23.79
newblue3 30.18 37.57 37.64 53.48 31.20 33.61
newblue4 21.38 23.77 22.01 22.83 21.03 19.72
newblue5 42.92 43.71 45.41 39.91 37.21 36.66
newblue6 44.93 50.50 46.43 44.24 45.80 41.87
newblue7 99.03 108.06 102.21 100.06 139.89 86.96

Norm 1.01 1.12 1.07 1.14 1.08 1

www.manaraa.com

61

3.8 Conclusion

In this chapter, we presented a high-quality mixed-size placer FLOP. Compared with the state-

of-the-art mixed-size placers and leading macro placers, FLOP achieves the best HPWL, and easily

produces the overlap-free layout for every circuit.

We believe there is room to further improve the QoR of FLOP. First, we can use the min-cost

flow algorithm to substitute the linear programming formulation in order to speed up the shifting step.

Second, we observe that the partitioning takes around 80% of the total runtime in the floorplanning.

Thus a stand-alone clustering algorithm is needed in the block formation to cut down the problem size

before partitioning. This will definitely improve both the runtime and HPWL. Third, by enhancing

the floorplanning framework, FLOP can also be extended to handle other problems, e.g. mixed-size

placement with geometry constraints. All of the above three issues will be addressed in Chapter 6.

www.manaraa.com

62

CHAPTER 4 Hypergraph Clustering for Wirelength-Driven Placement

Our first mission is to ask if they are safe.

— Maureen Blaha

4.1 Introduction

For modern VLSI designs, placement is the most critical stage in the physical synthesis flow. It has

significant impacts on timing, routing and even manufacturing. In the nanometer scale era, a circuit

typically contains millions of objects. It is extremely challenging for a modern placer to be reasonably

fast, yet still be able to produce good solutions. Clustering cuts down the problem size via combining

highly connected objects, so that the placers can perform more efficiently and effectively on a smaller

problem. It is an attractive solution to cope with the ever-increasing design complexity. Therefore, as

an essential approach to improve both the runtime and quality of result, various clustering algorithms

have been adopted in the state-of-the-art placement algorithms [7, 2, 51, 4, 6, 3, 52, 13].

4.1.1 Previous Work

Clustering is a traditional problem in VLSI Computer-Aided Design (CAD) area. The clustering

algorithms proposed long time ago were described in [53]. In the last several years, various new algo-

rithms were proposed to continue improving the clustering quality. In [54] Karypis et al. proposed edge

coarsening (EC) clustering. In EC objects are randomly visited. Each object is clustered with the most

highly-connected unvisited neighbor object. The connectivity between two objects is computed as the

total weight of all edges connecting them with hyperedges represented by a clique model. FirstChoice

(FC) clustering was developed in [34] and is very similar to EC. The only difference between them is

www.manaraa.com

63

that for each object in FC, all of its neighbor objects are considered for clustering. FC has been used

in placers NTUplace3 [7] and Capo [2]. However, neither EC nor FC considers the impact of cluster

size on the clustering quality. Alpert et al. [55] and Chan et al. [56] improved EC and FC respectively,

by considering the area of clusters, i.e., clusters with smaller area are preferred to be generated. Cong

et al. [57] proposed an edge separability-based clustering (ESC). Unlike previous methods, ESC uses

edge separability to guide the clustering process. To explore global connectivity information, all edges

are ranked via a priority queue (PQ) based on the edge separability. Without violating the cluster size

limit, the two objects in the highest ranking edge are clustered. Hu et al. [58] developed fine granularity

(FG) clustering. The difference between FG and ESC is that for FG the order in the PQ is based on edge

contraction measured by a mutual contraction metric. FG has been used in placer mFAR [51]. Nam et

al. [59] proposed BestChoice (BC) clustering which has been widely used in the top-of-the-line placers

APlace [4], mPL6 [6], FastPlace3 [3], RQL [52] and FLOP [13]. Instead of ranking the edges, BC

maintains a PQ based on a pair of objects, i.e., each object and its best neighbor object. A score func-

tion considering both hyperedge weight and object area is derived to calculate the score between two

objects. For each object, the best neighbor object is the neighbor object with the highest score. The two

objects at the top of the PQ are clustered iteratively. But updating such a PQ is quite time-consuming.

Hence, the authors proposed a lazy-update technique to make a trade-off between the clustering runtime

and quality.

All of the above clustering algorithms either explicitly or implicitly transform a hyperedge into

a clique model, so that they can handle pair-wise clustering, i.e., cluster two objects at each time.

Recently, Li et al. [60] presented NetCluster (NC) that can handle hyperedges directly and cluster more

than two objects at one time. In NC, initial clusters are first generated by FM algorithm [61]. Then a

score is assigned to each net. The objects in the net with the highest score are clustered.

For all previous clustering algorithms, none of them specifically aims at improving the placement

quality. They proposed a variety of heuristics, e.g., different score functions, to measure the direct con-

nectivity among the objects, so that the most highly directly connected objects are clustered. Of course,

the benefit is a reduction of problem size. But, clustering such objects may not help the placer to pro-

duce better solution. This is because clustering forces some objects to stay together during placement,

www.manaraa.com

64

a b
c

Figure 4.1 Example of indirect connections between objects a and b.

which constrains the solution space exploration of the placer. If such constraint is enforced improperly,

i.e., clustering objects that should not be clustered, the placement solution would be jeopardized. It has

not been proved that clustering highly directly connected objects can definitely minimize the placement

wirelength. Even though it makes some sense intuitively to cluster such objects, we believe it is not

sufficient to just consider the direct connections. We also need to take the indirect connections into

account. For example in Figure 4.1, two objects a and b are connected by a two-pin net. At the same

time, they are indirectly connected by two two-pin nets via object c. Such indirect connections intend

to pull a and b towards each other. But they have been ignored in all previous work. As a result, it is

very likely that previous algorithms mislead the placers to a low-quality solution.

In order to form the best clusters for placement, we need to solve the fundamental problem of

clustering for placement: How to do clustering, so that it can be guaranteed that clustering would not

degrade the placement quality?

4.1.2 Our Contributions

This chapter presents a completely new approach to the problem of hypergraph clustering for

wirelength-driven placement. We propose a novel clustering algorithm called SafeChoice (SC). SC

handles hyperedges directly. Different from all previous clustering algorithms, SC is proposed based

on a fundamental theorem, which guarantees that clustering would not degrade the placement qual-

ity. None of previous techniques has such guarantee. Additionally, three operation modes of SC are

presented to achieve various clustering objectives. Essentially, we have seven main contributions:

• Concept of Safe Clustering: We introduce the concept of safe clustering. If clustering some ob-

jects would not degrade the wirelength in an optimal placement, it is safe to cluster such objects.

www.manaraa.com

65

• Safe Condition: Based on the concept of safe clustering, we derive the fundamental theorem —

safe condition for pair-wise clustering. We prove that if any two objects satisfy the safe condition,

clustering them would not degrade the wirelength.

• Selective Enumeration: To check the safe condition for pair-wise clustering, we propose selec-

tive enumeration. With such method, we can efficiently find out the safe clusters in a circuit.

• SafeChoice: We present SafeChoice algorithm that globally ranks potential clusters via a PQ

based on their safeness and area. Iteratively the cluster at the top of the PQ will be formed.

• Smart Stopping Criterion: A smart stopping criterion is proposed based on a simple heuristic.

So it can automatically stop clustering once generating more clusters would start to degrade the

placement wirelength. As far as we know, none of previous algorithms has such feature.

• Physical SafeChoice: We extend SafeChoice to do clustering if the physical locations of some

objects are given. In this way, SafeChoice can make use of such location information, e.g., an

initial placement or fixed I/O object locations, and thus produces even better clusters.

• SCPlace: To demonstrate the effectiveness of Physical SafeChoice, we propose a simple and

high-quality two-phase placement algorithm called SCPlace. SCPlace is simple in the sense that

it has only one clustering level and two placement phases. But, it produces significantly better

results than all other state-of-the-art placement algorithms.

We compare SC with three state-of-the-art clustering algorithms FC, BC and NC. The results show that

the clusters produced by SC consistently helps the placer to generate the best wirelength. Compared

with the state-of-the-art placement algorithms, SCPlace is able to generate the best HPWL.

The rest of this chapter is organized as follows. Section 4.2 describes the safe clustering. Section 4.3

introduces the algorithm of SafeChoice. Section 4.4 presents the Physical SafeChoice. Section 4.5

introduces the algorithm of SCPlace. Experimental results are presented in Section 4.6. Finally, this

chapter ends with a conclusion and the direction of future work.

www.manaraa.com

66

4.2 Safe Clustering

In this section, we first introduce the concept of safe clustering. Then based on this concept we de-

rive the safe condition for pair-wise clustering. Finally we propose selective enumeration to practically

check the safe condition for any two objects in the circuit.

First of all, we introduce some notations used in the discussion. The original netlist is modeled by

a hypergraph G(V,E), where V is the set of vertices and E is the set of hyperedges. Given v ∈ V ,

Ev is the set of hyperedges incident to v, and Ev = E − Ev. Let P be the set of all possible legalized

placements of the vertices in V . The wirelength is measured by weighted HPWL.

4.2.1 Concept of Safe Clustering

The concept of safe clustering is defined as follows.

Definition 1. Safe Clustering: For a set of vertices Vc ⊆ V (|Vc| ≥ 2), if the optimal wirelength of the

netlist generated by clustering Vc is the same as the optimal wirelength of the original netlist, then it is

safe to cluster the vertices in Vc.

The placement problem is NP-hard. In practice we cannot find the optimal wirelength for a real

circuit. So we present a more practical definition below.

Definition 2. Safe Clustering?: ∀p ∈ P , if a set of vertices Vc ⊆ V (|Vc| ≥ 2) can be moved to the

same location without increasing the wirelength, then it is safe to cluster the vertices in Vc.

Definition 2 is established based an assumption that the area of every vertex in Vc is zero, so that we

can move them in a legalized placement and ignore the overlap issue. In other words, we only consider

clustering zero-area objects. Definition 2 shows that when safe clustering is performed on any legalized

(zero-overlap) placement p, it does not increase the total wirelength of p. But, the clustering algorithm

is not a placement algorithm and thus does not specify how any overlap incurred by the clustering is

to be removed. Therefore, we assume that the clusters are small enough, i.e., zero area, compared to

the total area of place-able objects in the clustered netlist, such that any wirelength increase incurred by

any displacement needed to remove overlap incurred by the clustering does not exceed the wirelength

decrease induced by the clustering. This assumption is reasonable, even though there is no zero-area

www.manaraa.com

67

object in the real circuits. This is because for a typical clustering ratio 1, the size of each cluster is

always much smaller than the total area of objects in the circuit. Note that, however, such assumption

may not be applicable when some complex floorplan geometry is presented, e.g., when a big cluster

is placed in a narrow channel between two big fixed objects. In this case, the displacement needed to

remove overlap incurred by the clustering may be quite big.

As you can see, Definition 2 is stronger than Definition 1. If Vc is safe for clustering based on

Definition 2, it is also safe under Definition 1. In the rest of this chapter, we employ Definition 2

for discussion. Based on Definition 2, we derive the definitions for horizontally and vertically safe

clustering as follows.

Definition 3. Horizontally/Vertically Safe Clustering: ∀p ∈ P , if a set of vertices Vc ⊆ V (|Vc| ≥ 2)

can be horizontally/vertically moved to the same x/y coordinate without increasing the wirelength in

x/y direction, then it is horizontally/vertically safe to cluster the vertices in Vc.

Now we show that if vertices in Vc are both horizontally and vertically safe for clustering, then

it is safe to cluster them under Definition 2. Given any initial placement p ∈ P , firstly we move

those vertices horizontally to the same x coordinate. Secondly, we move them vertically to the same

y coordinate. Consequently, the vertices in Vc are moved to the same location. Based on Definition 3

the wirelength would not increase during the movements. So it is safe to cluster the vertices in Vc by

Definition 2.

In the remaining part of Section 4.2, we consider only x direction and horizontally safe cluster-

ing. Analogically, the theoretical proof and mathematical derivation for y direction and vertical safe

clustering can be done in a similar way.

4.2.2 Safe Condition for Pair-Wise Clustering

From Definition 2 we derive a condition to mathematically determine whether it is safe to cluster

the vertices in Vc. Firstly, we define two key functions for the derivation. For the sake of simplicity, we

always assume Vc contains only two vertices a and b (i.e., Vc = {a, b}), and a is on the left of b.

1The clustering ratio is defined as the ratio of the number of objects in the clustered circuit to the number of objects in the
original circuit.

www.manaraa.com

68

Definition 4. Wirelength Gradient Function: Given a placement p ∈ P and a hyperedge e ∈ E, we

define

∆a(p, e) : Gradient function of wirelength of e, if a is moving towards b.

∆b(p, e) : Gradient function of wirelength of e, if b is moving towards a.

Let we(we ≥ 0) be the weight of e. From Definition 4 we have

∆a(p, e) =


we if a is the rightmost vertex of e

−we if a is the only leftmost vertex of e

0 otherwise

∆b(p, e) =


we if b is the leftmost vertex of e

−we if b is the only rightmost vertex of e

0 otherwise

Considering a is moving towards b in p, if ∆a(p, e) > 0, it means the wirelength of e will increase; if

∆a(p, e) < 0, then the wirelength of e will decrease; otherwise the wirelength of e will not change.

Definition 5. Total wirelength Gradient Function: Given a placement p ∈ P and Vc = {a, b}, we

define

Fab(p) = min(
∑
e∈Ea

∆a(p, e),
∑
e∈Eb

∆b(p, e))

In p if both a and bmove towards each other,Fab(p) first calculates the total wirelength change of all

hyperedges for moving a and b, respectively. Then it returns the one with smaller change. For example,

if Fab(p) =
∑

e∈Ea
∆a(p, e) ≤ 0, it means moving a towards b would not increase the total wirelength;

if Fab(p) > 0, then moving either a or b towards each other would increase the total wirelength. Next,

we use this function to derive the safe condition for a and b.

Theorem 1. Safe Condition for Vc = {a, b}

It is safe to cluster a and b if ∀p ∈ P,Fab(p) ≤ 0

Proof. Given an initial placement p0 ∈ P with total wirelength l0. Because ∀p ∈ P,Fab(p) ≤ 0,

we have Fab(p0) ≤ 0. Suppose Fab(p0) =
∑

e∈Ea
∆a(p0, e) ≤ 0. This means by moving a a small

distance towards b, the total wirelength of all hyperedges would not increase. After such movement, we

www.manaraa.com

69

get another placement p1 with total wirelength l1, where l0 ≥ l1. For p1 we still have Fab(p1) ≤ 0.

Suppose this time Fab(p1) =
∑

e∈Eb
∆b(p1, e) ≤ 0. This means moving b a small distance towards a

would not increase the total wirelength. Again, after such movement, we get another placement p2 with

total wirelength l2, where l1 ≥ l2. We keep moving either a or b towards each other until they reach the

same location. Suppose the final total wirelength is ln. Because after each movement we always have

Fab(p) ≤ 0, which means the total wirelength would not increase, eventually we have l0 ≥ ln.

As a result, given any initial placement p0 we can gradually move a and b to the same location

without increasing the wirelength. So based on Definition 2, it is safe to cluster vertices a and b.

4.2.3 Selective Enumeration

To check whether it is safe to cluster a and b, Theorem 1 shows that we need to generate all place-

ments in P . To do so, we have to enumerate all possible positions for all vertices in V . Apparently this

is not a practical approach. In this section, we show that in order to check Theorem 1, it is sufficient to

consider only a small subset of placements. Selective enumeration technique is proposed to enumerate

such necessary placements.

Selective enumeration is motivated by the following principle: Given two placements p1, p2 ∈ P , if

we know Fab(p1) ≤ Fab(p2), then p1 can be ignored in the enumeration. This is because Theorem 1

shows that the safe condition is only determined by the placement with the maximum Fab(p) value. So

the basic idea of selective enumeration is to find out the relationship of Fab(p) values among different

placements, so that in the enumeration process we can ignore the placements with smaller or equal

Fab(p) values. Placements in P are generated by different positions of different vertices. Our goal is to

identify some vertices in V , such that some or even all of their possible positions can be ignored.

We first classify the vertices in V into two categories Vāb̄ and Vab (Vāb̄ ∪ Vab ∪ {a, b} = V). Then

we discuss the enumeration of their positions separately. ∀v ∈ V , xv denotes the x coordinate of v.

1. Vāb̄: vertices connecting with neither a nor b.

2. Vab: vertices connecting with at least one of a and b.

Lemma 1. Given a placement p ∈ P , by moving vertex v ∈ Vāb̄ to any other position, another place-

ment p′ ∈ P is generated. We have Fab(p) = Fab(p′).

www.manaraa.com

70

Proof. Since ∀v ∈ Vāb̄, v connects with neither a nor b, changing the position of v would not change

the leftmost or rightmost vertex of any hyperedge connecting with a or b. Therefore,

∀e ∈ Ea, ∆a(p, e) = ∆a(p′, e)

∀e ∈ Eb, ∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) = Fab(p′).

Based on Lemma 1, in the enumeration we can simply ignore all vertices in Vāb̄.

Lemma 2. Given a placement p ∈ P , vertex v ∈ Vab and xv = k1. After moving v to xv = k2, another

placement p′ ∈ P is generated. We have Fab(p) = Fab(p′) if any one of the following conditions is

satisfied: (1) k1 ≤ xa and k2 ≤ xa; (2) k1 ≥ xb and k2 ≥ xb; (3) xa < k1 < xb and xa < k2 < xb.

Proof. Suppose condition (1) holds, i.e., v is on the left of a in both p and p′. ∀e ∈ Ev, we consider

two2 possible values of ∆a(p, e):

• ∆a(p, e) = we

This means a is the rightmost vertex of e in p. After moving v to k2, because k2 ≤ xa, a is still

the rightmost vertex of e in p′. Thus, ∆a(p′, e) = we = ∆a(p, e).

• ∆a(p, e) = 0

This means a is neither the only leftmost nor the rightmost vertex of e in p. After moving v to k2,

because k2 ≤ xa, v is still on the left of a in p′. Thus, ∆a(p′, e) = 0 = ∆a(p, e).

So ∀e ∈ Ev, ∆a(p, e) = ∆a(p′, e). Similarly we have ∀e ∈ Ev, ∆b(p, e) = ∆b(p′, e). Therefore,

∀e ∈ Ea,∆a(p, e) = ∆a(p′, e)

∀e ∈ Eb,∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) = Fab(p′). Analogically, the cases for conditions (2) and (3) can be proved as well.

Lemma 2 shows that ∀v ∈ Vab, instead of enumerating all possible positions, we only need to

consider three possibilities: (1) v is on the left of a (xv ≤ xa); (2) v is on the right of b (xv ≥ xb); (3) v

is between a and b (xa < xv < xb).
2Because v is on the left of a, a would not be the only leftmost vertex of e. Thus, ∆a(p, e) 6= −we.

www.manaraa.com

71

Based on Lemma 1 and 2, we need to enumerate 3|Vab| different placements rather than all place-

ments in P . Next, we will further cut down this number from 3|Vab| to 2|Vab|, by ignoring all positions

between a and b.

Lemma 3. Given a placement p ∈ P , such that vertex v ∈ Vab is between a and b (xa < xv < xb).

After moving v either to the left of a or to the right of b, another placement p′ ∈ P is generated. We

have Fab(p) ≤ Fab(p′).

Proof. Suppose v is moved to the left of a.

For a, after the movement, a might become the rightmost vertex of some hyperedge. So we have

∀e ∈ Ev,∆a(p, e) ≤ ∆a(p′, e) (4.1)

For b, after the movement, v is still on the left of b. So we have

∀e ∈ Ev,∆b(p, e) = ∆b(p′, e) (4.2)

Based on Equations 4.1–4.2, we have

∀e ∈ Ea,∆a(p, e) ≤ ∆a(p′, e)

∀e ∈ Eb,∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) ≤ Fab(p′). Similarly, we can prove the case for v is moved to the right of b.

So far, we have proved that we only need to consider two possible positions (on the left of a and on

the right of b) for each vertex in Vab, i.e., totally 2|Vab| different placements. In a modern circuit, |Vab|

may become more than 1000. So practically 2|Vab| is still too big to enumerate. Therefore, we intend to

further cut down this number.

We notice that for some vertices in Vab, it is not always necessary to consider both of the two

possible positions. For example in Figure 4.2-(I), v is only connected with a via e. If v is on the left

of a in placement pl, then Fab(pl) = min(we, 0) = 0; if v is on the right of b in placement pr, then

Fab(pr) = min(−we, 0) = −we. We have Fab(pl) > Fab(pr). So, we can ignore pr where v is on the

right of b. To make use of such property and further reduce the enumeration size, in the following part

we identify three subsets of vertices in Vab (V I , V II and V III), and prove that under certain condition

www.manaraa.com

72

a b

v
e

(I)

a b

v
e

(II)

a b

v
e

(III)

u

Figure 4.2 Simple examples of vertices that can be fixed.

the positions of those vertices can be fixed in the enumeration. Let Na denote the set of vertices sharing

at least one hyperedge with vertex a, and Na = V −Na. Similarly, we can define Nb and N b.

I. V I = Na ∩N b (e.g., in Figure 4.2-(I) vertex v ∈ V I)

II. V II = Na ∩Nb (e.g., in Figure 4.2-(II) vertex v ∈ V II)

III. V III = {v|v ∈ Vab s.t. (Ev ∩ (Ea ∪ Eb)) ⊂ (Ea ∩ Eb)} (e.g., in Figure 4.2-(III) vertices

v, u ∈ V III)

Lemma 4. Given a placement p ∈ P , such that vertex v ∈ V I is on the left of a. After moving v to the

right of b, another placement p′ ∈ P is generated. We have Fab(p) ≥ Fab(p′).

Proof. Let Ev∩ab = Ev ∩ (Ea ∪ Eb).

• In placement p, ∀e ∈ Ev∩ab, we consider two cases:

– ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≥ xb

Because xv ≤ xa and xc ≥ xb, xv ≤ xa ≤ xc. a is neither the only leftmost nor the

rightmost vertex of e. So ∆a(p, e) = 0.

– 6 ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≥ xb

Because xv ≤ xa and no other vertices in e are on the right of b, a is the rightmost vertex

of e. So ∆a(p, e) = we.

Thus, ∀e ∈ Ev∩ab,∆a(p, e) ≥ 0.

• In placement p′, ∀e ∈ Ev∩ab, we consider two cases:

www.manaraa.com

73

– ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≤ xa

Because x′v ≥ xb and xc ≤ xa, xc ≤ xa ≤ x′v. a is neither the only leftmost nor the

rightmost vertex of e. So ∆a(p′, e) = 0.

– 6 ∃ vertex c ∈ e(c 6= a, c 6= v), s.t. xc ≤ xa

Because x′v ≥ xb and no other vertices in e are on the left of a, a is the only leftmost vertex

of e. So ∆a(p, e) = −we.

Thus, ∀e ∈ Ev∩ab,∆a(p′, e) ≤ 0.

So ∀e ∈ Ev∩ab,∆a(p, e) ≥ ∆a(p′, e). Also ∀v ∈ V I , v does not connect with b, so ∀e ∈ Ev∩ab,∆b(p, e) =

∆b(p′, e). Therefore,

∀e ∈ Ea,∆a(p, e) ≥ ∆a(p′, e)

∀e ∈ Eb,∆b(p, e) = ∆b(p′, e)

Thus, Fab(p) ≥ Fab(p′).

From Lemma 4, ∀v ∈ V I we can fix v on the left of a. As V II is symmetrical with V I , similarly we

can prove that ∀v ∈ V II we can fix v on the right of b.

Lemma 5. Given a placement p ∈ P , such that vertex v ∈ V III is on the left of a, vertex u ∈ V III is

on the right of b, and Ev ∩ (Ea ∪ Eb) = Eu ∩ (Ea ∪ Eb). After moving either one or both of them to

another position, i.e., moving v to the right of b and u to the left of a, another placement p′ is generated.

We have Fab(p) ≥ Fab(p′).

Proof. Let Ev−u = Ev ∩ (Ea ∪ Eb) = Eu ∩ (Ea ∪ Eb). We consider all three possible movements of

v and u.

• v moved to the right of b, u did not move

In placement p′, ∀e ∈ Ev−u we consider two cases:

– ∃ vertex c ∈ e(c 6= a), s.t. xc ≤ xa

In this case, a is neither the only leftmost nor the rightmost vertex in e, and b is neither the

leftmost nor the only rightmost vertex in e. So ∆a(p′, e) = 0, ∆b(p′, e) = 0.

www.manaraa.com

74

– 6 ∃ vertex c ∈ e(c 6= a), s.t. xc ≤ xa

In this case, a is the only leftmost vertex in e, and b is neither the leftmost nor the only

rightmost vertex in e. So ∆a(p′, e) = −we, ∆b(p′, e) = 0.

• u moved to the left of a, v did not move

In placement p′, ∀e ∈ Ev−u we consider two cases:

– ∃ vertex c ∈ e(c 6= b), s.t. xc ≥ xb

In this case, a is neither the only leftmost nor the rightmost vertex in e, and b is neither the

leftmost nor the only rightmost vertex in e. So ∆a(p′, e) = 0, ∆b(p′, e) = 0.

– 6 ∃ vertex c ∈ e(c 6= b), s.t. xc ≥ xb

In this case, b is the only rightmost vertex in e, and a is neither the only leftmost nor the

rightmost vertex in e. So ∆a(p′, e) = 0, ∆b(p′, e) = −we.

• v moved to the right of b, u moved to the left of a

In this case, a is neither the only leftmost nor the rightmost vertex in e, and b is neither the

leftmost nor the only rightmost vertex in e. So ∀e ∈ Ev−u, ∆a(p′, e) = 0, ∆b(p′, e) = 0.

For all of the above cases, ∆a(p′, e) ≤ 0 and ∆b(p′, e) ≤ 0. In placement p, ∀e ∈ Ev−u because a is

neither the only leftmost nor the rightmost vertex in e, and b is neither the leftmost nor the only rightmost

vertex in e, we have ∆a(p, e) = ∆b(p, e) = 0. As a result, we have ∀e ∈ Ev−u, ∆a(p, e) ≥ ∆a(p′, e),

∆b(p, e) ≥ ∆b(p′, e), Therefore,

∀e ∈ Ea,∆a(p, e) ≥ ∆a(p′, e)

∀e ∈ Eb,∆b(p, e) ≥ ∆b(p′, e)

Thus, Fab(p) ≥ Fab(p′).

Lemma 5 shows that if ∃v, u ∈ V III and Ev ∩ (Ea ∪ Eb) = Eu ∩ (Ea ∪ Eb), then we can fix v to

the left of a and u to the right of b.

In all, we have identified three subsets of vertices in Vab. If certain condition is satisfied, those

vertices can be fixed in the enumeration. Note that those three subsets may not include all vertices that

www.manaraa.com

75

V = {a, b}

|V | - >10ab
Yes Would not consider

clustering a and b

No

Enumerate

No

Yes It is safe to cluster
a and b

It is unsafe to cluster a and b

c

α

 pi (1 i)≤≤ 2 ab|V |- α

S = F (p)i ab i

(S) 0max ≤i

Figure 4.3 Flow of selective enumeration.

can be fixed in Vab. We believe more complicated subsets and conditions can be derived. But for the

sake of simplicity, SafeChoice considers only the above three subsets.

Let the total number of vertices in V I , V II and V III be α. As a result, given two objects a and b,

we only need to enumerate L = 2|Vab|−α different placements. For each of those enumerated placement

pi (1 ≤ i ≤ L), we calculate a score si = Fab(pi). We define

smax = max(s1, s2, . . . , sL) (4.3)

Based on Theorem 1, if smax ≤ 0, then it is safe to cluster a and b. The flow of selective enumeration

is shown in Figure 4.3.

The more placements we enumerate (i.e., the bigger L is), the slower the algorithm runs. To limit

the runtime, at most 210 placements are enumerated by default. If |Vab| − α > 10, we simply would

not consider clustering a and b, and consequently we may lose some potential safe clusters. Table 4.1

shows the number of cases where |Vab|−α <= 10 and |Vab|−α > 10, and also the maximum value of

|Vab| − α for each ISPD 05/06 circuit. As you can see, in practice we have |Vab| − α ≤ 10 for most of

www.manaraa.com

76

Table 4.1 Profile of selective enumeration for each circuit.

Circuit Number of Cases Number of Cases Maximum
|Vab| − α <= 10 (%) |Vab| − α > 10 (%) |Vab| − α

adaptec1 3079149 (94%) 205937 (6%) 78
adaptec2 2834333 (92%) 252967 (8%) 110
adaptec3 5568171 (90%) 591043 (10%) 191
adaptec4 6362256 (93%) 448166 (7%) 110
bigblue1 3677691 (94%) 218500 (6%) 154
bigblue2 6941283 (95%) 351816 (5%) 1582
bigblue3 12136725 (95%) 592998 (5%) 205
bigblue4 22954456 (92%) 2104452 (8%) 1102
adaptec5 9935184 (90%) 1058753 (10%) 278
newblue1 4610210 (97%) 159220 (3%) 608
newblue2 4058091 (98%) 73838 (2%) 144
newblue3 6758853 (93%) 489111 (7%) 1016
newblue4 9215574 (95%) 530334 (5%) 331
newblue5 12046236 (94%) 744213 (6%) 372
newblue6 15996670 (91%) 1527619 (9%) 1316
newblue7 26414433 (94%) 1700947 (6%) 1151

the pairs (i.e., more than 90% of the pairs). Even if the unconsidered pairs are all safe, we would only

lose a very small portion of safe clusters.

4.3 Algorithm of SafeChoice

In the previous section, we have described a practical method of checking the safe condition for

pair-wise clustering. As shown in Definition 3, the safe condition has to be checked both horizontally

and vertically. However, without considering fixed vertices, e.g., I/O objects, if vertices in Vc are hori-

zontally safe for clustering, then they are always vertically safe for clustering as well. This is because a

vertical movement in a placement p is the same as a horizontal movement in another placement obtained

by rotating p by 90◦. If a set of vertices is horizontally safe for clustering, it is also vertically safe for

clustering, which means it is sufficient to check the safe condition only in x direction. Therefore, in

this section we ignore the fixed objects by treating them the same as movable ones, apply selective enu-

meration in a PQ-based algorithm flow and propose SafeChoice algorithm. To satisfy various clustering

objectives, we present three operation modes for SafeChoice.

www.manaraa.com

77

4.3.1 Priority-Queue Based Framework

Previous work [55, 56] show that the cluster size has significant impacts on the clustering quality. If

two potential clusters have the same connectivity information, the one with the smaller area is preferred

to be formed first. Moreover, because the concept of safe clustering in Definition 2 is defined based on

the assumption of clustering zero-area objects, to apply such concept on real circuits we need relax this

assumption and cluster small objects3. Thus, in SafeChoice to balance the safeness and area, we use the

following cost function to calculate the cost C for clustering two objects a and b.

C(a, b) = S∗ + θ × Aa +Ab

As
(4.4)

where θ is the weight between the safeness and area (based on the experiments θ = 4 by default), Aa

and Ab denote the area of a and b respectively, As is the average standard cell area in a circuit, and S∗

is a term describing the safeness of clustering a and b. S∗ is calculated based on different modes of

SafeChoice (see Section 4.3.2).

In SafeChoice we maintain a global PQ similar to that in [59]. But we rank each pair of objects based

on the cost obtained by Equation 4.4. If two pairs have the same cost, we just randomly determine the

priority between them. For SafeChoice, it is time-consuming to consider all possible pairs in V . So for

each object, we only consider its neighbor objects connected by the nets containing at most β objects

(based on the experiments β = 7 by default). Iteratively, SafeChoice clusters the pair of objects at the

top of the PQ, and then update the PQ using lazy-update. For different operation modes, SafeChoice

stops clustering based on different stopping criteria, which will be addressed in Section 4.3.2.

4.3.2 Operation Modes of SafeChoice

Given a circuit, some algorithms (e.g., FC and BC) can reach any clustering ratio γ, while others

(e.g., FG and NC) can only reach a certain γ. None of previous work is able to automatically stop

clustering when the best γ is reached. By default SafeChoice automatically stops clustering when gen-

erating more clusters would degrade the placement wirelength. Additionally, to achieve other clustering
3After relaxing the assumption, moving the small objects may create small overlap. But as the objects are small, the result

placement can be legalized by slightly shifting objects around and the impact to HPWL should be minimal.

www.manaraa.com

78

Table 4.2 Differences of three modes in SafeChoice (SC is the default mode).

Mode Clustering Objective S∗ Stopping Criterion

SC-G safe clusters guarantee smax no more safe clusters is in PQ
SC-R target clustering ratio s target clustering ratio is reached

SC best placement wirelength s threshold cost Ct is reached

objectives, e.g., any target γ, SafeChoice is capable of performing under various modes (see Table 4.2):

• Safety Guarantee Mode [SC-G]

SC-G aims at producing the completely safe clusters. Under this mode, S∗ = smax in Equa-

tion 4.4. In each iteration, we cluster the pair of objects at the top of the PQ only if its S∗ ≤ 0.

Based on Theorem 1, we guarantee that the formed clusters are safe. SC-G terminates when there

is no such safe clusters in the PQ.

• Clustering Ratio Mode [SC-R]

The SC-G mode may not achieve low clustering ratio in practice, because the number of safe

clusters in a circuit is usually limited. Sometimes if clustering cannot significantly reduce the

circuit size, even though all clusters are safe, the placer may not perform efficiently and produce

better result. So to make a trade-off between safeness and circuit size reduction, SC-R produces

some unsafe clusters, besides the safe ones. We derive the following function to evaluate the

safeness of each cluster:

s =
∑L

i=1 si
L

(4.5)

Basically, for a pair of objects a and b Equation 4.5 calculates the average score s over the L

enumerated placements. Under SC-R mode, S∗ = s in Equation 4.4. Iteratively, SC-R clusters

the pair of objects at the top of the PQ until the target γ is reached.

• Smart Mode [SC] (default mode)

Using a simple heuristic, the smart mode stops the clustering process when a typical placer

achieves the best placement wirelength. None of previous clustering algorithms has such fea-

ture. For different circuits, the γ for the best placement wirelength may be different. In SC, we

www.manaraa.com

79

set a threshold cost Ct, and use the same cost function as in SC-R. During the clustering pro-

cess, SC would not terminate until the cost reaches Ct. Based on the experimental results, we set

Ct = 21 by default. With this simple heuristic, SC is able to automatically stop when generating

more clusters starts to degrade the placement wirelength.

4.4 Physical SafeChoice

In this section, we extend SafeChoice to do clustering while considering the object physical loca-

tions, i.e., physical clustering.

Compared with non-physical clustering algorithms, physical clustering is to do clustering based on

both the netlist connectivity information and the object physical locations. Such physical locations can

be obtained from an initial placement or existing fixed objects. It has been shown in [51, 3, 62, 52]

that the physical clustering can significantly improve the clustering quality. For SafeChoice, it is very

natural to be extended to physical clustering. This is because SafeChoice applies selective enumeration

to enumerate different placements. If an initial placement is given, many more placements can be

ignored in the enumeration. This simplifies the enumeration process by pruning away the placements

that would not be possibly generated.

In the following subsections, we first introduce the safe condition for Physical SafeChoice. After

that, we present how to further reduce the enumeration size based on the given physical information.

Finally, we show the corresponding changes of cost functions in different modes of Physical SafeChoice.

4.4.1 Safe Condition for Physical SafeChoice

Because in Physical SafeChoice the fixed objects are taken into account, horizontally safe may

not always imply vertically safe. Therefore, we need to consider the safe condition for both x and y

directions in Physical SafeChoice.

Definitions 4 and 5 are defined for x direction. But they can be easily extended to y direction. Based

on Theorem 1, we present the safe condition for Physical SafeChoice as follows.

Theorem 2. Safe Condition for Vc = {a, b} in Physical SafeChoice

It is safe to cluster a and b, if ∀p ∈ P,Fxab(p) ≤ 0 and Fyab(p) ≤ 0

www.manaraa.com

80

where Fxab(p) and Fyab(p) are the total wirelength gradient functions for x and y directions, respec-

tively. In Section 4.2.1 we have proved that if vertices in Vc are both horizontally and vertically safe for

clustering, then it is safe to cluster them. Therefore, Theorem 2 can be proved similarly as in Theorem 1.

4.4.2 Enumeration Size Reduction based on Physical Location

In this subsection, we use the physical location information to cut down the placement enumeration

size. In this following discussion, we assume that such physical locations are derived from an initial

placement.

First of all, for each object we define a square-shape region to differentiate between the “long”

and “short” distances (in one dimension) of two objects. The center of each square-shape region is

the corresponding object location in the initial placement. The insight is that we assume in the final

placement the objects would not be placed outside of their regions. So intuitively, the better the initial

placement is, the less displacements of object locations between the initial and final placements we

have, and thus the smaller such regions are. Let t denote the side length of each square-shape region.

∀v, u ∈ V , Dx
vu denotes the distance of two vertices v and u in x direction. Therefore, based on

the square-shape region, we can derive the following three scenarios in x direction to cut down the

enumeration size (the scenarios for y direction can be derived similarly).

1. If Dx
ab > t, then we would not consider to cluster a and b. (see Figure 4.4-(a))

2. If xc ≤ xa andDx
cb > t, then in selective enumeration we fix c on the left of a (see Figure 4.4-(b));

3. If xc ≥ xb and Dx
ca > t, then in selective enumeration we fix c on the right of b (see Figure 4.4-

(c));

Scenario 1) is used as a filter to prune away the pairs of objects that would not be clustered due to the

“long” distance between them. Scenarios 2) and 3) are applied within selective enumeration to identify

the subsets of vertices that can be fixed. In Scenario 2) the reason why we consider “Dx
cb > t”, instead

of “Dx
ca > t”, is that as long as c is unlikely to be on the right of b, it will definitely be on the left of a.

This is because as shown in Lemma 3, there only two possible locations to enumerate for c, i.e., on the

left of a and on the right of b. The same reason applies for “Dx
ca > t” in Scenario 3).

www.manaraa.com

81

(a)

t t

Dab
x

Dcb
x

t

Dca
x

t

(b) (c)

a b c a b a b c

Figure 4.4 Examples of three scenarios with square-shape region.

Table 4.3 S∗ for three modes in Physical SafeChoice.

Mode S∗

SC-G max(sxmax, s
y
max)

SC-R (sx + sy)/2
SC (sx + sy)/2

Ideally, for different objects t should be different. However, finding such a t accurately for each

object is still an open problem. After all, we just need a simple estimation on the displacement that is

roughly determined by the quality of the placer. Therefore, by default we set t = 15 × hrow based on

the experiments and our experience on placement, where hrow is the placement row height.

4.4.3 Cost Function for Physical SafeChoice

In Physical SafeChoice, we employ almost the same cost function as Equation 4.4. However, the S∗

term in Equation 4.4 is defined based on one dimension, i.e., x direction. So we need to extend it to two

dimensions. The S∗ for the three operation modes in Physical SafeChoice are listed in Table 4.3, where

sxmax and sx denote the smax (Equation 4.3) and s (Equation 4.5) for x direction respectively, similarly

for symax and sy.

4.5 SafeChoice-Based Two-Phase Placement

In this section, we first propose a simple two-phase placement flow. Then based on this new algo-

rithm flow, we present SCPlace, a high-quality analytical placement algorithm.

The state-of-the-art placement algorithms [7, 2, 51, 4, 6, 3, 52] all adopt a multilevel framework to

www.manaraa.com

82

Global Placement
Clustered Netlist

Non-Physical
Clustering

Original Netlist
Unclustering

Physical Clustering

Incremental
Placement

Clustered Netlist

Original Netlist
Unclustering

Detailed Placement

Phase 1

Phase 2

SafeChoice

Flat-mPL6

SafeChoice

Flat-mPL6
+FastDP

FastDP

Figure 4.5 Simple two-phase placement flow in SCPlace.

cope with the ever-increasing complexities of modern VLSI placement. At each hierarchical level of the

coarsening phase, the placers first do clustering on the netlist passed from previous level, and then do

placement of the clustered netlist. Such a multilevel clustering-placement process does not stop, until

the original circuit is reduced to a reasonably smaller size. Subsequently, a corresponding multilevel

unclustering-placement process is applied at the uncoarsening phase. Typically, modern placers contain

at least four levels of clustering and placement.

Different from previous work, we propose a simple two-phase placement flow shown in Figure 4.5.

It is simple in the sense that this flow contains only one level of clustering and two phases of placement.

The goal of the first phase is to generate an initial placement, and to provide the physical location

information for the physical clustering in the next phase. Then at the second phase, we apply physical

clustering on the original netlist rather than the clustered netlist from previous clustering. This is the

key difference between our physical clustering scheme and the ones in [51, 3, 62, 52]. The reason

for doing this is that non-physical clustering may produce some low-quality clusters due to the lack of

physical information. In order to correct such mistake in non-physical clustering, in physical clustering

www.manaraa.com

83

we form the clusters from the original netlist. The location of each such cluster is calculated as the

average location of all objects in that cluster. As a result, after physical clustering we have an updated

location for each object in the clustered netlist. Subsequently, we start an incremental placer based on

such physical information to do both global and detailed placement on the clustered netlist. Finally,

after unclustering we use the detailed placement algorithm to refine the layout.

Based on this simple two-phase placement flow, we implement a high-quality analytical placement

algorithm, SCPlace (see Figure 4.5). We use SafeChoice as the clustering algorithm inside SCPlace.

As mentioned above, non-physical clustering may produce some low-quality clusters due to the lack of

physical information, so we want SafeChoice to generate less such clusters. Therefore, we set Ct = 16

instead of Ct = 21. For the Physical SafeChoice in the second phase, we use the default Ct = 21.

mPL6 [6] is applied as the placement engine. However, mPL6 is based on a multilevel framework,

and uses BC as its internal clustering algorithm. Without turning off BC inside mPL6, we cannot

demonstrate the effectiveness of SafeChoice, because the internal clustering process will produce some

noise to the results. Therefore, we turn off the BC clustering inside mPL6 by adding “-cluster ratio 1”

to the command line, so that mPL6 performs only one-level placement without any clustering inside,

i.e., flat-mPL64. The detailed placer FastDP [3] is used as the additional detailed placement algorithm

in SCPlace.

4.6 Experimental Results

All experiments are run on a Linux server with Intel Xeon 2.83 GHz CPU and 32 GB memory. ISPD

05/06 placement benchmarks [40, 41] are used as the test circuits. For the ISPD 06 circuits, we use the

density-penalty scaled HPWL defined in [41]. Firstly, we show the comparison of various clustering

algorithms for different clustering objectives. Secondly, we compare SCPlace with the stat-of-the-art

placement algorithms.
4As far as we know, mPL6 is the only placer that can turn off the internal clustering without modifying the source code.

www.manaraa.com

84

Unclustering

Flat-mPL6
Placement

Detailed Placement

Clustered Netlist

Clustering

Original Netlist

Figure 4.6 Experimental flow for clustering algorithm.

4.6.1 Comparison of Clustering Algorithms

We compare SC with three clustering algorithms FC [56], BC [59] and NC [60]. We implemented

FC and BC by ourselves and obtained the binary of NC from the authors [60]. For BC the lazy-

update [59] is used to speed up its runtime.

In the experiments, the clustering algorithm is applied as a pre-processing step before placement

(see Figure 4.6). We adopt mPL6 [6] as the placer. Due to the same reason mentioned in Section 4.5,

we use flat-mPL6 here. In Figure 4.6 after unclustering, we arrange the objects inside each cluster in

one row. The order among those objects are random. Subsequently the locations of all objects are

sent to flat-mPL6 for detailed placement. Because of the random order of objects within each cluster,

flat-mPL6 detailed placer alone may not be enough to generate a good result. So we apply the detailed

placer FastDP [3] to further refine the layout after flat-mPL6 detailed placement.

We normalize the results of flat-mPL6 with various pre-processing clustering to the results of flat-

mPL6 without any pre-processing clustering. For fair comparison, FastDP is applied to further refine

the output layouts from the flat-mPL6 without pre-processing clustering. We conduct five sets of exper-

iments.

I. Clustering Targeting at Safe Cluster: We compare SC-G with FC and BC. FC’s and BC’s target

γ is set the same as SC-G’s. Table 4.4 shows that SC-G’s HPWL is 2% worse than BC’s and 1% better

www.manaraa.com

85

than FC’s. For both clustering time and total time, SC-G is the fastest. Note that the cost C of some

unsafe (i.e., Smax > 0) clusters may be better than some safe clusters. But unfortunately SC-G does

not form any unsafe clusters. This makes SC-G’s HPWL worse than BC’s.

www.manaraa.com

86

Table 4.4 Comparison with FirstChoice and BestChoice based on SC-G’s clustering ratio (* compari-
son of scaled HPWL).

Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6
HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-G FC BC SC-G FC BC SC-G

adaptec1 78.91 1197 0.80 1 2 8 1.00 1.00 1.00 1.61 1.47 1.24
adaptec2 90.71 1241 0.77 2 4 10 0.99 0.99 1.00 1.73 1.63 1.43
adaptec3 210.34 3923 0.71 6 23 33 1.00 0.99 0.99 1.38 1.51 1.17
adaptec4 188.39 3463 0.62 9 24 38 1.00 0.99 0.98 1.76 1.70 1.28
bigblue1 96.73 1424 0.77 2 4 11 0.99 0.99 1.00 1.61 1.46 1.60
bigblue2 146.98 3988 0.73 142 605 101 1.00 0.99 0.99 1.57 1.54 1.52
bigblue3 419.56 9486 0.58 35 123 91 0.91 0.88 0.90 1.01 1.00 1.04
bigblue4 812.89 10543 0.64 273 1529 287 1.00 0.99 0.99 1.47 1.41 1.34

adaptec5* 731.47 7892 0.68 60 263 95 0.87 0.74 0.81 1.04 1.20 1.14
newblue1* 109.85 17305 0.78 48 294 53 0.98 0.93 1.00 1.25 1.41 1.07
newblue2* 197.44 4396 0.68 19 62 57 1.00 0.99 0.99 1.04 0.95 1.06
newblue3* 320.63 10200 0.65 337 2393 228 0.94 0.96 0.95 1.29 1.65 1.67
newblue4* 438.99 7779 0.71 30 137 48 0.92 0.88 0.95 0.89 0.85 0.90
newblue5* 836.62 10124 0.66 363 1728 112 0.99 0.83 0.91 1.46 1.44 1.10
newblue6* 520.95 7575 0.74 572 3487 204 0.99 0.98 0.98 1.78 2.14 1.42
newblue7* 1076.36 19219 0.64 124 367 181 0.98 0.97 0.97 1.20 1.23 1.15

Average Normalized 1.006 5.303 1 0.974 0.944 0.963 1.381 1.413 1.258

www.manaraa.com

87

II. Clustering Targeting at NetCluster’s Clustering Ratio: In this set of experiments, we compare

SC-R with FC, BC and NC based on NC’s γ. Since NC terminates when no more clusters can be formed,

it cannot reach any γ as the users desire. For each circuit the target γ of other algorithms is set the same

as NC’s. As shown in Table 4.5, SC-R consistently generates the best HPWL for all 16 test cases, except

for one case (bigblue3) where SC-R is 1% worse than BC. On average SC-R generates 4%, 1% and 5%

better HPWL than FC, BC and NC, respectively. In terms of clustering time, SC-R is 2.5× faster than

BC, while 45% and 19% slower than FC and NC, respectively. For the total time, SC-R is 1% and 7%

faster than FC and BC, while 5% slower than NC.

www.manaraa.com

88

Table 4.5 Comparison with FirstChoice, BestChoice and NetCluster based on NetCluster’s clustering
ratio (* comparison of scaled HPWL).

Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6
HPWL (×10e6) Time (s) Ratio (γ) FC BC NC SC-R FC BC NC SC-R FC BC NC SC-R

adaptec1 78.91 1197 0.6381 1 3 69 20 1.00 1.00 1.01 0.99 0.92 0.91 1.15 1.04
adaptec2 90.71 1241 0.5764 2 6 63 30 1.01 1.00 1.00 0.99 1.22 1.11 1.11 1.28
adaptec3 210.34 3923 0.5677 7 24 62 98 1.02 0.99 0.99 0.99 1.15 1.09 1.00 1.04
adaptec4 188.39 3463 0.5382 8 26 58 86 1.01 1.00 0.98 0.98 1.19 1.13 1.07 1.15
bigblue1 96.73 1424 0.6128 2 5 66 23 0.99 0.98 0.98 0.98 1.19 1.08 1.21 1.13
bigblue2 146.98 3988 0.5977 195 814 64 181 1.02 1.00 0.99 0.99 0.98 1.11 0.89 0.86
bigblue3 419.56 9486 0.5074 36 144 53 163 0.92 0.87 0.89 0.88 0.81 0.81 0.74 0.76
bigblue4 812.89 10543 0.5617 315 1696 58 588 1.01 0.99 0.99 0.99 1.21 1.27 1.10 1.19

adaptec5* 731.47 7892 0.5569 81 335 60 284 0.87 0.73 0.79 0.69 0.98 0.98 0.90 0.92
newblue1* 109.85 17305 0.5674 90 472 62 125 0.93 0.90 1.03 0.86 0.82 0.88 0.77 0.83
newblue2* 197.44 4396 0.5886 22 65 65 92 1.02 1.00 1.10 1.00 0.74 0.81 0.69 0.77
newblue3* 320.63 10200 0.5462 427 2440 63 342 0.93 0.93 1.15 0.93 1.04 1.39 0.99 1.04
newblue4* 438.99 7779 0.6357 34 159 68 109 0.92 0.86 0.93 0.85 0.63 0.62 0.59 0.58
newblue5* 836.62 10124 0.5505 481 1860 58 214 0.92 0.81 0.84 0.79 1.08 1.07 0.95 1.13
newblue6* 520.95 7575 0.5836 868 4871 64 755 0.99 0.97 0.97 0.97 1.14 1.78 1.01 1.05
newblue7* 1076.36 19219 0.5634 142 423 60 519 0.99 0.97 0.99 0.97 0.89 0.87 0.89 0.98

Average Normalized 0.545 2.475 0.813 1 0.971 0.937 0.978 0.928 1.000 1.056 0.940 0.985

www.manaraa.com

89

III. Clustering Targeting at Various Clustering Ratios: We compare SC-R with FC and BC on

five target clustering ratios γ = 0.2, 0.3, 0.4, 0.5, 0.6. In Tables 4.6 the results are organized based on

the circuits. We have two observations: (1) As γ goes lower, the clustering time increases but the total

time generally decreases; (2) To improve the HPWL, for some circuits (e.g., adaptec5) it is good to

cluster more objects. But for some circuits (e.g., newblue2) low γ degrades the HPWL. Figures 4.9, 4.8

and 4.9 shows the average normalized clustering time, HPWL and total time over all circuits for each

γ. For clustering time, SC-R is faster than BC for all γ, except for γ = 0.2 where SC-R is 12% slower.

For all γ, SC-R consistently produces the best HPWL compared with both FC and BC. Regarding the

total time SC-R is consistently faster than BC. Even though SC-R is slower than FC on clustering time,

SC-R’s total time is very comparable with FC’s, which means clusters produced by SC-R are preferred

by the placer. Furthermore, considering the significant HPWL improvements over FC and the small

percentage of clustering time over total time, we believe such slow down is acceptable.

www.manaraa.com

90

Table 4.6 Comparison with FirstChoice and BestChoice on target γ = 0.2, 0.3, 0.4, 0.5, 0.6 (* com-
parison of scaled HPWL).

Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6
HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-R FC BC SC-R FC BC SC-R

0.2 4 8 187 1.12 1.06 1.03 0.94 0.80 0.88
0.3 3 6 121 1.05 1.02 1.00 0.90 0.80 0.92

adaptec1 78.91 1197 0.4 2 5 51 1.01 1.00 0.99 0.93 0.86 1.00
0.5 2 4 35 1.00 1.00 0.99 0.95 0.92 0.91
0.6 2 3 24 1.00 0.99 0.99 1.04 1.02 1.04
0.2 8 16 238 1.08 1.02 1.00 1.03 0.82 1.01
0.3 5 12 144 1.05 0.99 0.98 1.35 1.20 1.22

adaptec2 90.71 1241 0.4 4 9 59 1.03 1.01 0.98 1.38 1.19 1.23
0.5 3 7 39 1.01 1.00 0.98 1.43 1.19 1.28
0.6 3 6 26 1.00 0.99 0.98 1.45 1.24 1.20
0.2 19 46 572 1.15 1.02 1.02 0.77 0.70 0.76
0.3 14 38 390 1.08 1.00 0.99 0.79 0.72 0.81

adaptec3 210.34 3923 0.4 11 32 162 1.04 1.00 0.99 0.94 0.74 0.73
0.5 9 26 114 1.04 1.00 0.98 1.28 1.16 1.17
0.6 7 23 80 1.01 1.00 0.98 1.35 1.21 1.23
0.2 16 49 403 1.08 0.99 0.99 0.81 0.70 0.79
0.3 13 42 276 1.04 0.98 0.98 0.82 0.74 0.77

adaptec4 188.39 3463 0.4 11 35 130 1.02 0.99 0.98 0.83 0.75 0.85
0.5 9 30 89 1.01 0.99 0.98 1.28 1.26 1.18
0.6 7 22 59 1.00 0.99 0.99 1.16 1.29 1.18
0.2 8 15 297 1.05 1.01 1.02 0.86 0.68 0.98
0.3 5 12 179 1.02 0.98 0.99 0.85 0.95 0.98

bigblue1 96.73 1424 0.4 4 9 66 1.01 0.98 0.98 0.91 0.86 0.91
0.5 3 7 39 1.00 0.97 0.98 1.01 0.85 0.89
0.6 2 6 23 1.00 0.98 0.98 1.09 1.17 1.18
0.2 395 1749 1162 1.15 1.07 1.05 0.84 1.05 0.92
0.3 344 1516 667 1.07 1.01 1.01 0.86 1.16 0.91

bigblue2 146.98 3988 0.4 302 1295 359 1.04 1.00 0.99 0.88 1.14 0.90
0.5 244 1005 226 1.03 0.99 0.99 0.95 1.18 0.92
0.6 194 796 159 1.01 1.00 0.99 1.09 1.11 0.99

www.manaraa.com

91

Table 4.6 (Continued)

Comparison with FirstChoice and BestChoice on target γ = 0.2, 0.3, 0.4, 0.5, 0.6 (* comparison of scaled HPWL).
Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6

HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-R FC BC SC-R FC BC SC-R
0.2 69 264 800 0.92 0.82 0.85 0.52 0.49 0.57
0.3 55 221 492 0.92 0.87 0.83 0.78 0.76 0.75

bigblue3 419.56 9486 0.4 46 174 241 0.92 0.84 0.85 0.90 0.81 0.82
0.5 36 146 158 0.93 0.88 0.88 0.93 0.95 0.91
0.6 30 116 89 0.91 0.88 0.89 1.00 1.01 0.91
0.2 633 2907 3262 1.12 1.01 1.02 1.06 1.17 1.19
0.3 534 2576 2220 1.06 1.00 0.99 1.19 1.44 1.24

bigblue4 812.89 10543 0.4 451 2169 1145 1.03 0.99 0.99 1.16 1.45 1.14
0.5 368 1819 733 1.01 0.99 0.99 1.24 1.35 1.23
0.6 288 1453 434 1.01 0.99 0.99 1.27 1.38 1.22
0.2 165 569 1424 0.77 0.63 0.62 0.52 0.56 0.66
0.3 139 503 984 0.83 0.66 0.63 0.52 0.52 0.62

adaptec5* 731.47 7892 0.4 114 419 456 0.84 0.68 0.65 0.61 0.58 0.59
0.5 93 358 324 0.86 0.72 0.69 1.07 1.29 1.07
0.6 73 311 204 0.88 0.73 0.70 1.23 1.32 1.15
0.2 169 806 781 0.91 0.88 0.81 0.13 0.24 0.23
0.3 149 718 527 0.91 0.86 0.80 0.23 0.49 0.41

newblue1* 109.85 17305 0.4 127 630 226 0.91 0.87 0.81 0.30 0.57 0.39
0.5 104 538 141 0.93 0.89 0.84 0.91 1.30 0.96
0.6 84 434 93 0.94 0.90 0.86 1.05 1.31 1.04
0.2 43 200 415 2.16 1.58 1.44 0.74 0.69 0.81
0.3 37 181 278 1.29 1.11 1.11 0.86 0.88 0.76

newblue2* 197.44 4396 0.4 32 164 155 1.07 1.03 1.03 0.82 0.89 0.86
0.5 26 128 116 1.02 1.01 1.01 1.04 0.88 0.97
0.6 21 65 84 1.01 1.00 1.00 0.90 0.89 0.90
0.2 931 3789 1010 0.98 0.89 0.89 0.50 0.76 0.50
0.3 783 3480 692 0.93 0.89 0.90 0.90 1.60 1.00

newblue3* 320.63 10200 0.4 630 3041 407 0.92 0.90 0.91 0.95 1.56 1.14
0.5 487 2546 326 0.92 0.93 0.93 1.00 1.34 1.15
0.6 362 2299 256 0.94 0.95 0.95 1.05 1.41 1.23

www.manaraa.com

92

Table 4.6 (Continued)

Comparison with FirstChoice and BestChoice on target γ = 0.2, 0.3, 0.4, 0.5, 0.6 (* comparison of scaled HPWL).
Circuit Flat-mPL6 Clustering Clustering Time (s) Normalized HPWL to Flat-mPL6 Normalized Total Time to Flat-mPL6

HPWL (×10e6) Time (s) Ratio (γ) FC BC SC-R FC BC SC-R FC BC SC-R
0.2 77 334 981 0.94 0.88 0.81 0.46 0.57 0.49
0.3 66 302 643 0.91 0.88 0.80 0.50 0.64 0.60

newblue4* 438.99 7779 0.4 55 267 275 0.91 0.86 0.81 0.59 0.72 0.62
0.5 46 221 188 0.92 0.86 0.81 0.53 0.61 0.57
0.6 37 168 114 0.93 0.85 0.83 0.62 0.59 0.63
0.2 1093 3948 1483 0.94 0.70 0.78 0.64 1.02 0.62
0.3 877 2863 935 0.95 0.73 0.74 0.71 0.95 0.69

newblue5* 836.62 10124 0.4 693 2124 392 0.96 0.77 0.77 1.09 1.10 1.01
0.5 532 1903 237 0.94 0.78 0.77 1.04 1.10 0.98
0.6 399 1713 155 0.92 0.82 0.80 1.04 1.10 0.94
0.2 1941 8229 4058 1.05 0.99 0.97 1.16 1.95 1.19
0.3 1641 7415 2793 1.01 0.97 0.96 1.11 1.77 1.31

newblue6* 520.95 7575 0.4 1343 6558 1378 1.00 0.97 0.96 1.27 1.88 1.28
0.5 1082 5391 890 0.99 0.97 0.97 1.14 1.64 1.07
0.6 824 4535 639 0.99 0.98 0.97 1.17 1.66 1.16
0.2 290 948 2704 1.07 0.99 1.00 0.90 0.98 0.81
0.3 238 738 1774 1.02 0.97 0.97 0.78 0.80 0.93

newblue7* 1076.36 19219 0.4 197 605 891 1.00 0.97 0.97 0.79 0.74 0.95
0.5 159 472 596 0.99 0.97 0.97 0.76 0.72 1.00
0.6 126 380 422 0.98 0.97 0.97 0.93 1.00 1.03

www.manaraa.com

93

0.6310.5580.468
0.2810.221

2.961
2.425

1.946

1.155

0.883

0

1

2

3

0.2 0.3 0.4 0.5 0.6

FirstChoice BestChoice SC-R

Figure 4.7 Average normalized clustering time to SC-R over all circuits for target
γ = 0.2, 0.3, 0.4, 0.5, 0.6.

IV. Clustering Targeting at Best Placement Wirelength: Table 4.6 shows that various γ leads to

various HPWL for each circuit. Here, we show that for most of the circuits, SC is able to automati-

cally stop clustering, when the γ for the best HPWL is reached (see Table 4.7). Readers may compare

Table 4.6 with Table 4.7 to verify this. To see how one-level clustering compares with multilevel clus-

tering, we generate the results of original multilevel mPL6 with FastDP (“mPL6+FastDP”) in Table 4.7.

The clustering time and final γ inside mPL6 are listed in Table 4.7. We can see that mPL6 has 4 levels of

clustering and placement. Comparing SC with “mPL6+FastDP”, even though SC on average generates

3% worse HWPL, for almost half of the circuits SC’s HPWL is even better than “mPL6+FastDP”. For

most circuits, the HPWL generated by SC and “mPL6+FastDP” are very comparable. Regarding the

total time, SC is significantly faster than “mPL6+FastDP” by 33%. Such results show that for some

circuits one-level SC clustering generates better HPWL than multilevel BC clustering with substan-

tial runtime speedup. From that we see prospective improvements if SC is applied into the multilevel

placement framework.

www.manaraa.com

94

1.093

0.9710.9760.983

1.008

0.9390.9340.9280.933

0.971

0.9230.9150.918 0.930

0.957

0.9

0.95

1

1.05

1.1

0.2 0.3 0.4 0.5 0.6

Flat-mPL6 FirstChoice
BestChoice SC-R

Figure 4.8 Average normalized HPWL to flat-mPL6 over all circuits for target
γ = 0.2, 0.3, 0.4, 0.5, 0.6.

1.09
1.03

0.90

0.82
0.74

1.171.11

0.99
0.96

0.82

1.07

1.02
0.90

0.87

0.78

0.7

0.8

0.9

1

1.1

1.2

0.2 0.3 0.4 0.5 0.6

Flat-mPL6 FirstChoice
BestChoice SC-R

Figure 4.9 Average normalized total time to flag-mPL6 over all circuits for target
γ = 0.2, 0.3, 0.4, 0.5, 0.6.

www.manaraa.com

95

Table 4.7 Comparison with multilevel mPL6 (* comparison of scaled HPWL).

Circuit HPWL (×10e6) Total Time (s) SC Clustering Info. BC Clustering Info. inside mPL6
Flat-mPL6 SC mPL6+FastDP Flat-mPL6 SC mPL6+FastDP Time (s) γ Time (s) Final γ # of levels

adaptec1 78.91 78.51 76.47 1197 1238 1807 76 0.33 29 0.006 4
adaptec2 90.71 88.51 89.19 1241 2064 2032 73 0.36 47 0.006 4
adaptec3 210.34 207.27 206.00 3923 3732 6187 228 0.33 87 0.006 4
adaptec4 188.39 184.33 187.51 3463 3227 5687 208 0.31 67 0.007 4
bigblue1 96.73 95.31 95.14 1424 1319 2208 109 0.32 42 0.008 4
bigblue2 146.98 146.07 146.57 3988 4183 5992 458 0.36 81 0.045 4
bigblue3 419.56 357.56 331.70 9486 10516 8842 420 0.30 131 0.005 4
bigblue4 812.89 803.43 806.83 10543 15460 19457 1622 0.33 468 0.008 4

adaptec5* 731.47 461.99 429.97 7892 5919 10796 697 0.32 149 0.005 4
newblue1* 109.85 88.10 64.72 17305 7490 2567 368 0.31 44 0.005 4
newblue2* 197.44 198.35 198.90 4396 6303 7141 91 0.58 61 0.007 4
newblue3* 320.63 287.76 283.25 10200 14986 9644 683 0.30 66 0.029 4
newblue4* 438.99 351.02 301.89 7779 6053 9481 421 0.33 93 0.010 4
newblue5* 836.62 624.26 526.98 10124 8405 16220 625 0.34 251 0.008 4
newblue6* 520.95 498.44 516.43 7575 11081 13566 2059 0.33 255 0.009 4
newblue7* 1076.36 1042.97 1070.08 19219 21049 32561 1159 0.34 278 0.014 4

Normalized 1 0.910 0.879 1 1.086 1.412

www.manaraa.com

96

Table 4.8 Comparison with original multilevel mPL6 (* comparison of scaled HPWL).

HPWL (×10e6) Total Time (s) Clustering Info. inside SCPlace
Circuit SafeChoice Physical SafeChoice

mPL6 SCPlace mPL6 SCPlace Time (s) γ Time (s) γ # of levels
adaptec1 78.05 76.50 1769 937 54 0.43 109 0.34 1
adaptec2 91.76 86.30 1940 1504 52 0.44 101 0.36 1
adaptec3 214.29 204.10 5949 2981 167 0.42 192 0.34 1
adaptec4 194.25 183.20 5487 2652 150 0.40 213 0.32 1
bigblue1 96.75 93.58 2158 1182 60 0.43 136 0.33 1
bigblue2 152.33 144.39 5842 3345 333 0.43 313 0.36 1
bigblue3 343.89 336.01 8382 7682 288 0.39 302 0.31 1
bigblue4 829.42 790.76 18590 12486 1219 0.42 1233 0.33 1

adaptec5* 430.42 419.72 10714 5528 459 0.41 263 0.32 1
newblue1* 73.21 77.27 2489 10798 218 0.41 55 0.36 1
newblue2* 201.63 194.66 7109 4642 54 0.70 79 0.61 1
newblue3* 284.04 281.59 9508 13736 577 0.39 337 0.33 1
newblue4* 302.04 295.98 9410 4272 288 0.43 64 0.38 1
newblue5* 536.29 522.71 16085 10149 407 0.43 201 0.37 1
newblue6* 521.28 494.10 13457 10877 1481 0.42 1113 0.34 1
newblue7* 1083.66 1035.15 32372 23356 1003 0.43 932 0.34 1

Normalized 1.036 1 1.549 1

4.6.2 Comparison of Placement Algorithms

In this subsection, we compare SCPlace with the state-of-the-art placement algorithms.

I. Firstly, we compare SCPlace with mPL6. We run both algorithms on the same machine. The

results and the clustering information inside SCPlace are shown in Table 4.8. In terms of the HPWL,

SCPlace is consistently better than mPL6, except for one circuit (i.e., newblue1). On average, SCPlace

generates 4% better HPWL than mPL6. Regarding the total runtime, SCPlace is 55% faster than mPL6.

As mentioned in Section 4.5, in the first phase of SCPlace we set Ct = 16 rather than Ct = 21 for

non-physical SafeChoice, so that the non-physical SafeChoice will stop clustering earlier to generate

less low-quality clusters.

II. Secondly, we compare SCPlace with all other placement algorithms. Because some of the plac-

ers’ binaries are not publicly available, instead of running every placer on the same machine, we directly

cite the results from [52]. As far as we know, RQL [52] is the latest published placement algorithm in

academic area, and it generates the best results on average compared with all previous placers. The

experimental results are shown in Table 4.9. The “Previously Best” column shows the previously

best HPWL achieved by other placers for each circuit. The results are quite promising. Regarding

www.manaraa.com

97

the HPWL, SCPlace is 2%, 25%, 9%, 6%, 3%, 21%, 6% and 1% better than NTUplace3, Capo10.5,

mFAR, APlace, mPL6, Dragon, Kraftwerk and RQL, respectively. Even though SCPlace is 1% worse

than the previously best approach, for 11 out of 16 circuits, SCPlace generates better results, which

means SCPlace has broken the records for 11 circuits. All of the placers here, except for Kraftwerk,

have at least four levels of placement. Using only one level of clustering and two phases of placement,

SCPlace is able to beat all of them.

www.manaraa.com

98

Table 4.9 HPWL comparison with state-of-the-art placement algorithms (* comparison of scaled
HPWL, † results are tuned for each circuit, the results of all other placers (except Kraftwerk2)
are cited from [52] and — denotes unavailable results in [52]).

Circuit NTUplace3 [7] Capo10.5 [2] mFAR [51] APlace [4] mPL6 [6] Dragon [1] Kraftwerk2 [5] RQL [52] Previously Best SCPlace

adaptec1 80.93 91.28 — 78.35 77.91 — 82.43 77.82 77.82 76.50
adaptec2 89.95 100.75 91.53† 87.31† 91.96 94.72† 92.85 88.51 87.31 86.30
adaptec3 214.20 228.47 — 218.52 214.05 — 227.22 210.96 210.96 204.10
adaptec4 193.74 208.35 190.84† 187.65† 194.23 200.88† 199.43 188.86 187.65 183.20
bigblue1 97.28 108.60 97.70† 94.64† 96.79 102.39† 97.67 94.98 94.64 93.58
bigblue2 152.20 162.92 168.70† 143.82† 152.33 159.71† 154.74 150.03 143.82 144.39
bigblue3 348.48 398.49 379.95† 357.89† 344.37 380.45† 343.32 323.09 323.09 336.01
bigblue4 829.16 965.30 876.28† 833.21† 829.35 903.96† 852.40 797.66 797.66 790.76

adaptec5* 448.58 494.64 476.28 520.97 431.14 500.74 449.48 443.28 431.14 419.72
newblue1* 61.08 98.48 77.54 73.31 67.02 80.77 66.19 64.43 61.08 77.27
newblue2* 203.39 309.53 212.90 198.24 200.93 260.83 206.53 199.60 198.24 194.66
newblue3* 278.89 361.25 303.91 273.64 287.05 524.58 279.57 269.33 269.33 281.59
newblue4* 301.19 362.40 324.40 384.12 299.66 341.16 309.44 308.75 299.66 295.98
newblue5* 509.54 659.57 601.27 613.86 540.67 614.23 563.15 537.49 509.54 522.71
newblue6* 521.65 668.66 535.96 522.73 518.70 572.53 537.59 515.69 515.69 494.10
newblue7* 1099.66 1518.75 1153.76 1098.88 1082.92 1410.54 1162.12 1057.79 1057.79 1035.15

Normalized 1.02 1.25 1.09 1.06 1.03 1.21 1.06 1.01 0.99 1

www.manaraa.com

99

Table 4.10 Runtime breakdown of SCPlace.

Steps in SCPlace Runtime%

Non-Physical Clustering 6%
Global Placement 39%

Physical Clustering 6%
Incremental Placement 45%

Detailed Placement 4%

The runtime breakdown of SCPlace is presented in Table 4.10. It shows that the total runtime

is dominated by two steps, i.e., global placement and incremental placement. Both non-physical and

physical clustering contribute only 6% of the total runtime.

4.7 Conclusion

In this chapter, we have presented SafeChoice, a novel high-quality clustering algorithm. We aim

at solving the fundamental problem — How to form safe clusters for placement. The clusters produced

by SafeChoice are definitely essential for the placer to produce a good placement. Comprehensive

experimental results show that SafeChoice is capable of producing the best clusters for the placer. Based

on SafeChoice, we derived Physical SafeChoice, and integrated it into a high-quality analytical placer,

SCPlace. Promisingly, by a simple two-phase of placement, SCPlace significantly outperforms all

state-of-the-art placement algorithms.

Our future work includes three directions: 1) To derive the safe condition for more than two vertices;

2) To develop our own placer based on SafeChoice, rather than feeding the clustered netlist to flat-mPL6

binary; 3) To integrate SafeChoice into other algorithms, e.g., hypergraph partitioning. Regarding the

last point, we can simply integrate SafeChoice into existing partitioner. Or more interestingly, we can

propose a safe condition for hypergraph partitioning, e.g., what is the safe condition to do a partition?

Finally, the source code of SafeChoice is publicly available at [39].

www.manaraa.com

100

CHAPTER 5 Soft-Block Shaping in Floorplanning

Sometimes the questions are complicated and the answers are simple.

— Dr. Seuss

5.1 Introduction

Floorplanning is a very crucial step in modern VLSI designs. A good floorplan solution has a

positive impact on the placement, routing and even manufacturing. In floorplanning step, a design

contains two types of blocks, hard and soft. A hard block is a circuit block with both area and aspect

ratio 1 fixed, while a soft one has fixed area, yet flexible aspect ratio. Shaping such soft blocks plays

an important role in determining the top-level spatial structure of a chip, because the shapes of blocks

directly affect the packing quality and the area of a floorplan. However, due to the ever-increasing

complexity of ICs, the problem of shaping soft blocks is not trivial.

5.1.1 Previous Work

In slicing floorplan, researchers proposed various soft-block shaping algorithms. Stockmeyer [31]

proposed the shape curve representation used to capture different shapes of a subfloorplan. Based on

the shape curve, it is straightforward to choose the floorplan solution with the minimum cost, e.g.,

minimum floorplan area. In [32], Zimmermann extended the shape curve representation by considering

both slicing line directions when combining two blocks. Yan et al. [12] generalized the notion of slicing

tree [18] and extended the shape curve operations. Consequently, one shape curve captures significantly

more shaping and floorplan solutions.
1The aspect ratio is defined as the ratio of the block height to the block width.

www.manaraa.com

101

Different from slicing floorplan, the problem of shaping soft blocks to optimize the floorplan area

in non-slicing floorplan is much more complicated. Both Pan et al. [63] and Wang et al. [64] tried

to extend the slicing tree and shape curve representations to handle non-slicing floorplan. But, their

extensions are limited to some specific non-slicing structures. Instead of using the shape curve, Kang et

al. [65] adopted the bounded sliceline grid structure [66] and proposed a greedy heuristic algorithm to

select different shapes for each soft block, so that total floorplan area was minimized. Moh et al. [67]

formulated the shaping problem as a geometric programming and searched for the optimal floorplan

area using standard convex optimization. Following the same framework as in [67], Murata et al. [68]

improved the algorithm efficiency via reducing the number of variables and functions. But the algorithm

still took a long time to find a good solution. In [69], Young et al. showed that the shaping problem

for minimum floorplan area can be solved optimally by Lagrangian relaxation technique. Lin et al. [70]

changed the problem objective to minimizing the half perimeter of a floorplan, and solved it optimally

by the min-cost flow and trust region method.

For non-slicing floorplan, all previous shaping algorithms were targeting at classical floorplanning,

i.e., minimizing the floorplan area. None of them considered a predefined fixed outline in the problem

formulation. But, in the nanometer scale era classical floorplanning cannot satisfy the requirements of

hierarchical design. In contrast, fixed-outline floorplanning [17] enabling the hierarchical framework

is preferred by modern ASIC designs. Therefore, it is necessary to design a shaping algorithm in non-

slicing floorplan which can satisfy the fixed-outline constraint.

5.1.2 Our Contributions

This chapter presents an efficient, scalable and optimal slack-driven shaping (SDS) algorithm for

soft blocks in non-slicing floorplan. SDS is specifically formulated for fixed-outline floorplanning.

Given a fixed upper bound on the layout width, SDS minimizes the layout height by only shaping the

soft blocks in the design. If such upper bound is set as the width of a predefined fixed outline, SDS

is capable of optimizing the area for fixed-outline floorplanning. As far as we know, none of previous

work in non-slicing floorplan considers the fixed-outline constraint in the problem formulation. In SDS,

soft blocks are shaped iteratively. At each iteration, we shape some soft blocks to minimize the layout

www.manaraa.com

102

height, with the guarantee that the layout width would not exceed the given upper bound. The amount

of change on each block is determined by globally distributing the total amount of slack to individual

block. During the whole shaping process, the layout height is monotonically reducing, and eventually

converges to an optimal solution. Essentially, we have three main contributions.

• Basic Slack-Driven Shaping: The basic slack-driven shaping algorithm is a very simple shaping

technique. Iteratively, it identifies some soft blocks, and shapes them by a slack-based shaping

scheme. The algorithm stops until there is no identified soft block. The runtime complexity in

each iteration is linear time. The basic SDS can achieve an optimal layout height for most cases.

• Optimality Conditions: To check the optimality of the shaping solution returned by the basic

SDS, two optimality conditions are proposed. We prove that if either one of the two conditions is

satisfied, the solution returned by the basic SDS is optimal.

• Slack-Driven Shaping (SDS): Based on the basic SDS and the optimality conditions, we propose

the slack-driven shaping algorithm. In SDS, a geometric programming method is applied to

improve the non-optimal solution produced by the basic SDS. SDS always returns an optimal

shaping solution.

To show the efficiency of SDS, we compare it with the two shaping algorithms in [69] and [70] on

MCNC benchmarks. Even though both of them claim their algorithms can achieve the optimal solution,

experimental results show that SDS consistently generates better solution on each circuit with signif-

icantly better runtime. On average SDS is 253× and 33× faster than [69] and [70] respectively, to

produce solutions of similar quality. We also run SDS on HB benchmarks. Experimental results show

that on average after 6%, 10%, 22% and 47% of the total iterations, the layout height is within 10%,

5%, 1% and 0.1% difference from the optimal solution, respectively.

The rest of this chapter is organized as follows. Section 5.2 describes the problem formulation.

Section 5.3 introduces the basic slack-driven shaping algorithm. Section 5.4 discusses the optimality of

a shaping solution and presents two optimality conditions. Section 5.5 describes the algorithm flow of

SDS. Experimental results are presented in Section 5.6. Finally, this chapter ends with a conclusion and

the direction of future work.

www.manaraa.com

103

5.2 Problem Formulation

In the design, suppose we are given n blocks. Each block i (1 ≤ i ≤ n) has fixed area Ai.

Let wi and hi denote the width and height of block i respectively. The range of wi and hi are given

as Wmin
i ≤ wi ≤ Wmax

i and Hmin
i ≤ hi ≤ Hmax

i . If block i is a hard block, then Wmin
i =

Wmax
i and Hmin

i = Hmax
i . Let xi and yi denote the x and y coordinates of the bottom-left corner of

block i respectively. To model the geometric relationship among the blocks, we use the horizontal and

vertical constraint graphsGh andGv, where the vertices represent the blocks and the edges between two

vertices represent the non-overlapping constraints between the two corresponding blocks. In Gh, we

add two dummy vertices 0 and n+ 1 that represent the left-most and right-most boundary of the layout

respectively. Similarly, in Gv we add two dummy vertices 0 and n + 1 that represent the bottom-most

and top-most boundary of the layout respectively. The area of the dummy vertices is 0. We have x0 = 0

and y0 = 0. Vertices 0 and n+ 1 are defined as the source and the sink in the graphs respectively. Thus,

in both Gh and Gv, we add one edge from the source to each vertex that does not have any incoming

edge, and add one edge from each vertex that does not have any outgoing edge to the sink.

In our problem formulation, we assume the constraint graphs Gh and Gv are given. Given an upper

bound on the layout width as W , we want to minimize the layout height yn+1 by only shaping the

soft blocks in the design, such that the layout width xn+1 ≤ W . Such problem can be mathematically

formulated as follows:

www.manaraa.com

104

Problem 1. Height Minimization with Fixed Upper-Bound Width

Minimize yn+1

subject to xn+1 ≤W

xj ≥ xi + wi, ∀(i, j) ∈ Gh

yj ≥ yi + hi, ∀(i, j) ∈ Gv

Wmin
i ≤ wi ≤Wmax

i , 1 ≤ i ≤ n

Hmin
i ≤ hi ≤ Hmax

i , 1 ≤ i ≤ n

wihi = Ai, 1 ≤ i ≤ n

x0 = 0

y0 = 0

It is clear that if W is set as the width of a predefined fixed outline, Problem 1 can be applied in

fixed-outline floorplanning.

5.3 Basic Slack-Driven Shaping

In this section, we present the basic slack-driven shaping algorithm, which solves Problem 1 opti-

mally for most cases.

First of all, we introduce some notations used in the discussion. Given the constraint graphs and the

shape of the blocks, we can pack the blocks to four lines, i.e., the left (LL), right (RL), bottom (BL)

and top (TL) lines. LL, RL, BL and TL are set as “x = 0”, “x = W ”, “y = 0” and “y = yn+1”,

respectively. Let ∆xi denote the difference of xi when packing block i to RL and LL. Similarly,

∆yi denotes the difference of yi when packing block i to TL and BL. For block i (1 ≤ i ≤ n), the

horizontal slack shi and vertical slack svi are calculated as follows:

shi = max(0,∆xi)

svi = max(0,∆yi)

In Gh, given any path 2 from the source to the sink, if for all blocks on this path, their horizontal slacks

are equal to zero, then we define such path as a horizontal critical path (HCP). The length of one HCP
2By default, all paths mentioned in this chapter are from the source to the sink in the constraint graph.

www.manaraa.com

105

is the summation of the width of blocks on this path. Similarly, we can define the vertical critical path

(VCP) and the length of one VCP is the summation of the height of blocks on this path. Note that,

because we set RL as the “x = W ” line, if xn+1 < W , then there is no HCP in Gh.

The algorithm flow of the basic SDS is simple and straightforward. The soft blocks are shaped

iteratively. At each iteration, we apply the following operations:

1. Shape the soft blocks on all VCPs by increasing the width and decreasing the height. This reduces

the lengths of the VCPs.

2. Shape the soft blocks on all HCPs by decreasing the width and increasing the height. This reduces

the lengths of the HCPs.

The purpose of the first operation is to minimize the layout height yn+1 by decreasing the lengths of

all VCPs. As mentioned previously, if xn+1 < W then there is no HCP. Thus, the second operation

is applied only if xn+1 = W . This operation seems to be unnecessary, yet actually is critical for the

proof of the optimality conditions. The purpose of this operation will be explained in Section 5.4. At

each iteration, we first globally distribute the total amount of slack reduction to the soft blocks, and then

locally shape each individual soft block on the cirtical paths based on the allocated amount of slack

reduction. The algorithm stops until we cannot find any soft block to shape on the critical paths. During

the whole shaping process, the layout height yn+1 is monotonically decreasing and thus the algorithm

always converges.

In the following subsections, we first identify which soft blocks to be shaped (which we called target

soft blocks) at each iteration. Secondly, we mathematically derive the shaping scheme on the target soft

blocks. Finally, we present the algorithm flow of the basic slack-driven shaping.

www.manaraa.com

106

5.3.1 Target Soft Blocks

For a given shaping solution, the set of n blocks can be divided into the following seven disjoint

subsets (I–VII).

Subset I = {block i is hard}

Subset II = {block i is soft} ∩ {shi 6= 0, svi 6= 0}

Subset III = {block i is soft} ∩ {shi = 0, svi = 0}

Subset IV = {block i is soft} ∩ {shi 6= 0, svi = 0} ∩ {wi 6= Wmax
i }

Subset V = {block i is soft} ∩ {shi 6= 0, svi = 0} ∩ {wi = Wmax
i }

Subset VI = {block i is soft} ∩ {shi = 0, svi 6= 0} ∩ {hi 6= Hmax
i }

Subset VII = {block i is soft} ∩ {shi = 0, svi 6= 0} ∩ {hi = Hmax
i }

Based on the definitions of critical paths, we have the following observations.

Observation 1. If block i ∈ subset II, then i is not on any HCP nor VCP.

Observation 2. If block i ∈ subset III, then i is on both HCP and VCP, i.e., at the intersection of some

HCP and some VCP.

Observation 3. If block i ∈ subset IV or V, then i is on some VCP but not on any HCP.

Observation 4. If block i ∈ subset VI or VII, then i is on some HCP but not on any VCP.

As mentioned previously, yn+1 can be minimized by reducing the height of the soft blocks on the

vertical cricital paths, and such block-height reduction will result in a decrease on the horizontal slacks

of those soft blocks. From the above observations, only soft blocks in subsets III, IV and V are on the

vertical critical paths. However, for block i ∈ subset III, shi = 0, which means its horizontal slack

cannot be further reduced. And for block i ∈ subset V, wi = Wmax
i , which means its height cannot

be further reduced. As a result, to minimize yn+1 we can only shape blocks in subset IV. Similarly, we

conclude that whenever we need to reduce xn+1 we can only shape blocks in subset VI. For the hard

blocks in subset I, they cannot be shaped anyway.

Therefore, the target soft blocks are blocks in subsets IV and VI.

www.manaraa.com

107

5.3.2 Shaping Scheme

Let δhi denote the amount of increase on wi for block i ∈ subset IV, and δvi denote the amount of

increase on hi for block i ∈ subset VI. In the remaining part of this subsection, we present the shaping

scheme to shape the target soft block i ∈ subset IV by setting δhi . Similar shaping scheme is applied to

shape the target soft block i ∈ subset VI by setting δvi . By default, all blocks mentioned in the following

part are referring to the target soft blocks in subset IV.

We use “i ∈ p” to denote that block i is on a path p in Gh. Suppose the maximum horizontal slack

over all blocks on p is spmax. Basically, spmax gives us a budget on the total amount of increase on the

block width along this path. If
∑

i∈p δ
h
i > spmax, then after shaping, we have xn+1 > W , which violates

the “xn+1 ≤ W ” constraint. Therefore, we have to set δhi accordingly, such that
∑

i∈p δ
h
i ≤ spmax for

all p in Gh.

To determine the value of δhi , we first define a distribution ratio αpi (αpi ≥ 0) for block i ∈ p. We

assign the value of αpi , such that ∑
i∈p

αpi = 1

Lemma 6. For any path p in Gh, we have

∑
i∈p

αpi s
h
i ≤ spmax

Proof. Because spmax = MAXi∈p(shi), this lemma can be proved as follows:

∑
i∈p

αpi s
h
i ≤

∑
i∈p

αpi s
p
max = spmax

∑
i∈p

αpi = spmax

Based on Lemma 6, for a single path p, it is obvious that if δhi ≤ α
p
i s
h
i (i ∈ p), then we can guarantee∑

i∈p δ
h
i ≤ s

p
max.

More generally, if there are multiple paths going through block i (1 ≤ i ≤ n), then δhi needs to

satisfy the following inequality:

δhi ≤ α
p
i s
h
i ,∀p ∈ P hi (5.1)

www.manaraa.com

108

where P hi is the set of paths in Gh going through block i. Inequality 5.1 is equivalent to the following

inequality.

δhi ≤ MIN
p∈Ph

i

(αpi)s
h
i (5.2)

Essentially, Inequality 5.2 gives an upper bound on the amount of increase onwi for block i ∈ subset IV.

For block i ∈ p, the distribution ratio is set as follows:

αpi =

 0 i is the source or the sink

Wmax
i −wiP

k∈p(Wmax
k −wk) otherwise

(5.3)

The insight is that if we allocate more slack reduction to the blocks that have potentially more room to

be shaped, the algorithm will converge faster. And we allocate zero amount of slack reduction to the

dummy blocks at the source and the sink in Gh. Based on Equation 5.3, Inequality 5.2 can be rewritten

as follows (1 ≤ i ≤ n):

δhi ≤
(Wmax

i − wi)shi
MAX
p∈Ph

i

(
∑

k∈p(W
max
k − wk))

(5.4)

From the above inequality, to calculate the upper bound of δhi , we need to obtain the value of three

terms, (Wmax
i −wi), shi and MAXp∈Ph

i
(
∑

k∈p(W
max
k −wk)). The first term can be obtained in constant

time. Using the longest path algorithm, shi for all i can be calculated in linear time. A trivial approach

to calculate the third term is via traversing each path in Gh. This takes exponential time, which is not

practical. Thus, we propose a dynamic programming (DP) based approach, which takes linear time to

get MAXp∈Ph
i

(
∑

k∈p(W
max
k − wk)).

In Gh, suppose vertex i (0 ≤ i ≤ n + 1) has in-coming edges coming from the vertices in the set

V in
i , and out-going edges going to the vertices in the set V out

i . Let P ini denote the set of paths that

start at the source and end at vertex i in Gh, and P outi denote the set of paths that start at vertex i and

end at the sink in Gh. For the source of Gh, we have V in
0 = φ and P in0 = φ. For the sink of Gh,

we have V out
n+1 = φ and P outn+1 = φ. We notice that MAXp∈Ph

i
(
∑

k∈p(W
max
k − wk)) can be calculated

www.manaraa.com

109

recursively by the following equations.

MAX
p∈P in

0

(
∑
k∈p

(Wmax
k − wk)) = 0

MAX
p∈P out

n+1

(
∑
k∈p

(Wmax
k − wk)) = 0

MAX
p∈P in

i

(
∑
k∈p

(Wmax
k − wk)) = MAX

j∈V in
i

(MAX
p∈P in

j

(
∑
k∈p

(Wmax
k − wk)))

+(Wmax
i − wi) (5.5)

MAX
p∈P out

i

(
∑
k∈p

(Wmax
k − wk)) = MAX

j∈V out
i

(MAX
p∈P out

j

(
∑
k∈p

(Wmax
k − wk))

+(Wmax
i − wi) (5.6)

MAX
p∈Ph

i

(
∑
k∈p

(Wmax
k − wk)) = MAX

p∈P in
i

(
∑
k∈p

(Wmax
k − wk))

+MAX
p∈P out

i

(
∑
k∈p

(Wmax
k − wk))

−(Wmax
i − wi) (5.7)

Based on the equations above, the DP-based approach can be applied as follows (1 ≤ i ≤ n):

1. Firstly, we apply topological sort algorithm on Gh.

2. Secondly, we scan the sorted vertices from the source to the sink, and calculate MAXp∈P in
i

(
∑

k∈p(W
max
k −

wk)) by Equation 5.5.

3. Thirdly, we scan the sorted vertices from the sink to the source, and calculate MAXp∈P out
i

(
∑

k∈p(W
max
k −

wk)) by Equation 5.6.

4. Finally, MINp∈Ph
i

(
∑

k∈p(W
max
k − wk)) is obtained by Equation 5.7.

It is clear that by the DP-based approach, the whole process of calculating the upper bound of δhi for all

i takes linear time.

5.3.3 Flow of Basic Slack-Driven Shaping

The algorithm flow of basic slack-driven shaping is shown in Figure 5.1.

In the algorithm flow shown in Figure 5.1, for each block i in the design, we set its initial width

wi = Wmin
i (1 ≤ i ≤ n). Based on the input Gh, Gv and initial block shape, we can calculate an initial

www.manaraa.com

110

Basic Slack-Driven Shaping
Input: wi = Wmin

i (∀1 ≤ i ≤ n);
Gh and Gv;
upper-bound width W .

Output: optimized yn+1, wi and hi.
Begin
1. Set LL, BL and RL to “x = 0”, “y = 0” and “x = W ”.
2. Pack blocks to LL and use longest path algorithm to get xn+1.
3. If xn+1 > W ,
4. Return no feasible solution.
5. Else,
6. Repeat
7. Pack blocks to BL and use longest path algorithm to get yn+1.
8. Set TL to “y = yn+1”.
9. Pack blocks to LL, RL and TL, respectively.
10. Calculate shi and svi .
11. Find target soft blocks.
12. If there are target soft blocks,
13. ∀j ∈ subset IV, increase wj by δhj = MINp∈Ph

j
(αpj)s

h
j ;

14. ∀j ∈ subset VI, increase hj by δvj = β ×MINp∈P v
j
(αpj)s

v
j .

15. Until there is no target soft block.
End

Figure 5.1 Flow of basic slack-driven shaping.

www.manaraa.com

111

value of xn+1. If this initial value is already bigger than W , then Problem 1 is not feasible. At each

iteration we set δvj = β ×MINp∈P v
j

(αpj)s
v
j for target soft block j ∈ subset VI. By default, β = 100%,

which means we use up all available vertical slacks every time. One potential problem with this strategy

is that the layout height yn+1 may remain the same, i.e., never decreasing. This is because after one

iteration of shaping, the length of some non-critical vertical path increases, and consequently its length

may become equivalent to the length of the VCP in the previous iteration. To solve this issue, in the

implementation whenever we detect that yn+1 does not change for more than two iterations, we will set

β = 90%. That is we only allocate part of the available slacks to the soft blocks. For δhj , we always set

it at its upper bound.

Because in each iteration the total increase on width or height of the target soft blocks would not

exceed the budget, we can guarantee that the layout would not be outside of the four lines after shaping.

As iteratively we set TL to the updated “y = yn+1” line, yn+1 will be monotonically decreasing during

the whole shaping process. Different from TL, because we set RL to the fixed “x = W ” line, during

the shaping process xn+1 may be bouncing i.e., sometimes increasing and sometimes decreasing, yet

always no more than W . The shaping process stops when there is no target soft block.

5.4 Optimality Conditions

For most cases, in the basic SDS the layout height yn+1 will converge to an optimal solution of

Problem 1. However, sometimes the solution may be non-optimal as the one shown in Figure 5.2-(a).

The layout in Figure 5.2-(a) contains four soft blocks 1, 2, 3 and 4, where Ai = 4, Wmin
i = 1 and

Wmax
i = 4 (1 ≤ i ≤ 4). The given upper-bound width W = 5. In the layout, w1 = w3 = 4 and

w2 = w4 = 1. There is no target soft block on any one of the four critical paths (i.e., two HCPs and

two VCPs), so the basic SDS returns yn+1 = 5. But the optimal layout height should be 3.2, when

w1 = w2 = w3 = w4 = 2.5 as shown in Figure 5.2-(b). In this section, we will look into this issue

and present the optimality conditions for the shaping solution returned by the basic SDS.

Let L represent a shaping solution generated by the basic SDS in Figure 5.1. All proof in this

section are established based on the fact that the only remaining soft blocks that could be shaped to

possibly improve L are the ones in subset III. This is because L is the solution returned by the basic

www.manaraa.com

112

4
2

x5

y
5

0

(a)

4

x5

y
5

0

(b)

1

3

2
3.2

3

1

Figure 5.2 Example of a non-optimal solution from basic SDS.

SDS and in L there is no soft block that belongs to subset IV nor VI any more. This is also why we need

apply the second shaping operation in the basic SDS. Its purpose is not reducing xn+1, but eliminating

the soft blocks in subset VI. From Observation 2, we know that any block in subset III is always at

the intersection of some HCP and some VCP. Therefore, to improve L it is sufficient to just consider

shaping the intersection soft blocks between the HCPs and VCPs.

Before we present the optimal conditions, we first define two concepts.

• Hard Critical Path: If all intersection blocks on one critical path are hard blocks, then this path

is a hard critical path.

• Soft Critical Path: A critical path, which is not hard, is a soft critical path.

Lemma 7. If there exists one hard VCP in L, then L is optimal.

Proof. Because all intersection blocks on this VCP are hard blocks, there is no soft block that can be

shaped to possibly improve this VCP. Therefore, L is optimal.

Lemma 8. If there exists at most one soft HCP or at most one soft VCP in L, then L is optimal.

Proof. As proved in Lemma 7, if there exists one hard VCP in L, then L is optimal. So in the following

proof we assume there is no hard VCP in L. For any hard HCP, as all intersection blocks on it are hard

blocks, we cannot change its length by shaping those intersection blocks any way. So we can basically

ignore all hard HCPs in this proof.

www.manaraa.com

113

(a) (b) (c)

Figure 5.3 Examples of three optimal cases in L.

Suppose L is non-optimal. We should be able to identify some soft blocks and shape them to

improve L. As mentioned previously, it is sufficient to just consider shaping the intersection soft blocks.

If there is at most one soft HCP or at most one soft VCP, there are only three possible cases in L. (As

we set TL as the “y = yn+1” line, there is always at least one VCP in L.)

1. There is no soft HCP, and there is one or multiple soft VCPs. (e.g., Figure 5.3-(a))

In this case, L does not contain any intersection soft blocks.

2. There is one soft HCP, and there is one or multiple soft VCPs. (e.g., Figure 5.3-(b))

In this case, L has one or multiple intersection soft blocks. Given any one of such blocks, say i.

To improve L, hi has to be reduced. But this increases the length of the soft HCP, which violates

“wl ≤W ” constraint. So, none of the blocks can be shaped to improve L.

3. There is one or multiple soft HCPs, and there is one soft VCP. (e.g., Figure 5.3-(c))

In this case, L has one or multiple intersection soft blocks. Given any one of such blocks, say i.

Similarly, it can be proved that “wl ≤ W ” constraint will be violated, if hi is reduced. So, none

of the blocks can be shaped to improve L.

As a result, for all the above cases, we cannot find any soft blocks that could be shaped to possibly

improve L. This means our assumption is not correct. Therefore, L is optimal.

5.5 Flow of Slack-Driven Shaping

Using the conditions presented in Lemmas 7 and 8, we can determine the optimality of the output

solution from the basic SDS. Therefore, based on the algorithm flow in Figure 5.1, we propose the slack-

www.manaraa.com

114

driven shaping algorithm shown in Figure 5.4. SDS always returns an optimal solution for Problem 1.

Slack-Driven Shaping
Input: wi = Wmin

i (∀1 ≤ i ≤ n);
Gh and Gv;
upper-bound width W .

Output: optimal yn+1, wi and hi.
Begin
1. Set LL, BL and RL to “x = 0”, “y = 0” and “x = W ”.
2. Pack blocks to LL and use longest path algorithm to get xn+1.
3. If xn+1 > W ,
4. Return no feasible solution.
5. Else,
6. Repeat
7. Pack blocks to BL and use longest path algorithm to get yn+1.
8. Set TL to “y = yn+1”.
9. Pack blocks to LL, RL and TL, respectively.
10. Calculate shi and svi .
11. Find target soft blocks.
12. If there are target soft blocks,
13. ∀j ∈ subset IV, increase wj by δhj = MINp∈Ph

j
(αpj)s

h
j ;

14. ∀j ∈ subset VI, increase hj by δvj = β ×MINp∈P v
j
(αpj)s

v
j .

15. Else,
16. If Lemma 7 or 8 is satisfied,
17. L is optimal.
18. Else,
19. Improve L by a single step of geometric programming.
20. If no optimal solution is obtained,
21. Go to Line 7.
22. Else,
23. L is optimal.
24. Until L is optimal.
End

Figure 5.4 Flow of slack-driven shaping.

The differences between SDS and the basic version are starting from line 15 in Figure 5.4. When

there is not target soft block, instead of terminating the algorithm, SDS will first check the optimality of

L, and if it is not optimal, L will be improved via geometric programming. The algorithm stops when

an optimal solution is obtained.

www.manaraa.com

115

As mentioned previously, if the solution L generated by the basic SDS is not optimal, we only need

to shape the intersection soft blocks to improve L. In this way, the problem now becomes shaping the

intersection blocks to minimize the layout height yn+1 subject to layout width constraint “xn+1 ≤W ”.

In other words, it is basically the same as Problem 1, except that we only need to shape a smaller

number of soft blocks (i.e., the intersection soft blocks). This problem is a geometric program. It

can be transformed into a convex problem and solved optimally by any convex optimization technique.

However, considering the runtime, we don’t need to rely on geometric programming to converge to an

optimal solution. We just run one step of some iterative convex optimization technique (e.g., deepest

descent) to improve L. Then we can go back to line 7, and applied the basic SDS again. It is clear that

SDS always converges to the optimal solution because as long as the solution is not optimal, the layout

height will be improved.

In modern VLSI designs, the usage of Intellectual Property (IP) and embedded memory blocks

becomes more and more popular. As a result, a design usually contains tens or even hundreds of

big hard macros, i.e., hard blocks. Due to their big sizes, after applying the basic SDS most likely

they are at the intersections of horizontal and vertical critical paths. Moreover, in our experiments we

observe that there is always no more than one soft HCP or VCP in the solution returned by the basic

SDS. Consequently, we never need to apply the geometric programming method in our experiments.

Therefore, we believe that for most designs the basic slack-driven shaping algorithm is sufficient to

achieve an optimal solution for Problem 1.

5.6 Experimental Results

This section presents the experimental results. All experiments are run on a Linux server with AMD

Opteron 2.59 GHz CPU and 16GB memory. We use two sets of benchmarks, MCNC [69] and HB [37].

For each circuit, the corresponding input Gh and Gv are provided by a floorplanner. The range of the

aspect ratio for any soft block in the circuit is [1
3 , 3].

After the input data is read, SDS will set the initial width of each soft block at its minimum width.

In SDS, if the amount of change on the width or height of any soft block is less than 0.0001, we would

not shape such block because any change smaller than that would be masked by numerical error.

www.manaraa.com

116

5.6.1 Experiments on MCNC Benchmarks

Using the MCNC benchmarks we compare SDS with the two shaping algorithms in [69] and [70].

All blocks in these circuits are soft blocks. The source codes of [69] and [70] are obtained from the

authors.

In fact, these three shaping algorithms cannot be directly compared, because their optimization

objectives are all different:

• [69] is minimizing the layout area xn+1yn+1;

• [70] is minimizing the layout half perimeter xn+1 + yn+1;

• SDS is minimizing the layout height yn+1, s.t. xn+1 ≤W .

Still, to make some meaningful comparisons as best as we can, we setup the experiment in the following

way.

• We do two groups of experiment: 1) SDS v.s. [69]; 2) SDS v.s. [70].

• As the circuit size are all very small, to do some meaningful comparison on the runtime, in each

group we run both shaping algorithms 1000 times with the same input data.

• For group 1, we run [69] first, and use the returned final width from [69] as the input upper-bound

width W for SDS. Similar procedure is applied for group 2.

• For groups 1 and 2, we compare the final results based on [69]’s and [70]’s objective respectively.

Table 5.1 shows the results on group 1. The column “ws(%)” gives the white space percentage

over the total block area in the final layout. For all five circuits SDS achieves significantly better results

on the floorplan area. On average, SDS achieves 394× smaller white space and 23× faster runtime

than [69]. In the last column, we report the runtime SDS takes to converge to a solution that is better

than [69]. To just get a slightly better solution than [69], on average SDS uses 253× faster runtime.

As pointed out by [70], [69] does not transform the problem into a convex problem before applying

Lagrangian relaxation. Hence, the algorithm [69] may not converge to an optimal solution.

www.manaraa.com

117

Table 5.1 Comparison with [69] on MCNC Benchmarks († shows the total shaping time of 1000 runs
and does not count I/O time).

#. Young et al. [69] SDS SDS stops when result
Circuit Soft ws Final Final Shaping ws Final Final Upper-Bound Shaping is better than [69]

Blocks (%) Width Height Time† (s) (%) Width Height Width W Time† (s) ws (%) Time† (s)
apte 9 4.66 195.088 258.647 0.12 0.00 195.0880 246.6147 195.0880 0.26 2.85 0.01

xerox 10 7.69 173.323 120.945 0.08 0.01 173.3229 111.6599 173.3230 0.23 6.46 0.01
hp 11 10.94 83.951 120.604 0.08 1.70 83.9509 109.2605 83.9510 0.10 7.96 0.02

ami33a 33 8.70 126.391 100.202 22.13 0.44 126.3909 91.7830 126.3910 3.97 8.67 0.28
ami49a 49 10.42 144.821 273.19 203.80 1.11 144.8210 247.4727 144.8210 1.86 9.74 0.20

Normalized 393.919 23.351 1.000 1.000 313.980 0.092

Table 5.2 Comparison with [70] on MCNC Benchmarks († shows the total shaping time of 1000 runs
and does not count I/O time).

#. Lin et al. [70] SDS SDS stops when result
Circuit Soft Half Final Final Shaping Half Final Final Upper-Bound Shaping is better than [70]

Blocks Perimeter Width Height Time† (s) Perimeter Width Height Width W Time† (s) Half Peri. Time† (s)
apte 9 439.319 219.814 219.505 0.99 439.3050 219.8139 219.4911 219.8140 0.59 439.1794 0.01

xerox 10 278.502 138.034 140.468 1.24 278.3197 138.0339 140.2858 138.0340 0.30 278.4883 0.12
hp 11 190.3848 95.2213 95.1635 1.51 190.2435 95.2212 95.0223 95.2213 0.17 190.3826 0.10

ami33a 33 215.965 107.993 107.972 34.85 215.7108 107.9930 107.7178 107.9930 1.45 215.9577 0.46
ami49a 49 377.857 193.598 184.259 26.75 377.5254 193.5980 183.9274 193.5980 2.20 377.8242 0.44

Normalized 1.001 10.177 1.000 1.000 1.001 0.304

www.manaraa.com

118

Table 5.3 Comparison on runtime complexity.

Algorithm Runtime Complexity

Young et al. [69] O(m3 + km2)
Lin et al. [70] O(kn2mlog(nC))

Basic SDS O(km)

(k is the total number of iterations, n is the total number of blocks in the design, m is the total number
of edges in Gh and Gv, and C is the biggest input cost.)

Table 5.2 shows the results on group 2. The authors claims the shaping algorithm in [70] can find

the optimal half perimeter on the floorplan layout. But, for all five circuits SDS gets consistently better

half perimeter than [70], with on average 10× faster runtime. Again, in the last column, we report the

runtime SDS takes to converge to a solution that is better than [70]. To just get a slightly better solution

than [70], on average SDS uses 33× faster runtime. We believe algorithm [70] stops earlier, before it

converges to an optimal solution.

From the runtime reported in Tables 5.1 and 5.2, it is clear that as the circuit size increases, SDS

scales much better than both [69] and [70]. In Table 5.3, we list the runtime complexities among

the three shaping algorithms. As in our experiments, it is never necessary to apply the geometric

programming method in SDS, we list the runtime complexity of the basic SDS in Table 5.3. Obviously,

the basic SDS has the best scalability.

5.6.2 Experiments on HB Benchmarks

This subsection presents the experimental results of SDS on HB benchmarks. As both algorithms

in [69] and [70] crashed on this set of circuits, we cannot compare SDS with them. The HB benchmarks

contain both hard and soft blocks ranging from 500 to 2000 (see Table 5.4 for details).

For each test case, we set the upper-bound width W as the square root of 110% of the total block

area in the corresponding circuit. Let Y denote the optimal yn+1 SDS converges to. The results are

shown in Table 5.4. The “Convergence Time” column lists the total runtime of the whole convergence

process. The “Total #.Iterations” column shows the total number of iteration SDS takes to converge to

Y . For fixed-outline floorplanning, SDS can stop early as long as the solution is within the fixed outline.

So in the subsequent four columns, we also report the number of iterations when yn+1−Y
Y starts to be

www.manaraa.com

119

less than 10%, 5%, 1% and 0.1%, respectively. The average total convergence time is 1.18 second. SDS

takes average 1901 iterations to converge to Y . The four percentage numbers in the last row shows

that on average after 6%, 10%, 22% and 47% of the total number of iterations, SDS converges to the

layout height that is within 10%, 5%, 1% and 0.1% difference from Y , respectively. In order to show

the convergence process more intuitively, we plot out the convergence graphs of yn+1 for four circuits

in Figure 5.5(a)-5.5(d). In the curves, the four blue arrows point to the four points when yn+1 becomes

less than 10%, 5%, 1% and 0.1% difference from Y , respectively.

www.manaraa.com

120

Table 5.4 Experimental results of SDS on HB benchmarks.

Circuit #.Soft Blocks Upper-Bound Final Final Convergence Total #.Iterations when yn+1−Y
Y becomes

/ #.Hard Blocks Width W Width Height (Y) Time (s) #.Iterations < 10% < 5% < 1% < 0.1%

ibm01 665 / 246 2161.9005 2161.9003 2150.3366 0.82 2336 54 85 225 629
ibm02 1200 / 271 3057.4816 3056.6026 3050.4862 0.40 485 65 102 230 431
ibm03 999 / 290 3298.2255 3298.2228 3305.6953 0.36 565 62 97 231 456
ibm04 1289 / 295 3204.7658 3204.7656 3179.9406 3.65 3564 53 87 271 1076
ibm05 564 / 0 2222.8426 2222.8424 2104.4136 0.29 1456 102 142 279 522
ibm06 571 / 178 3069.5289 3068.5232 2988.6851 0.14 500 58 105 265 419
ibm07 829 / 291 3615.5698 3615.5696 3599.6710 1.86 3966 63 114 269 1210
ibm08 968 / 301 3855.1451 3855.1449 3822.5919 0.42 690 75 111 232 545
ibm09 860 / 253 4401.0232 4401.0231 4317.0274 1.20 2512 50 82 234 687
ibm10 809 / 786 7247.6365 7246.7511 7221.0778 0.49 472 28 56 162 377
ibm11 1124 / 373 4844.2184 4844.2183 4820.8615 0.60 654 64 96 253 509
ibm12 582 / 651 6391.9946 6388.6978 6383.9537 0.10 157 26 47 91 138
ibm13 530 / 424 5262.6052 5262.6050 5204.0326 1.03 2695 52 78 244 753
ibm14 1021 / 614 5634.2142 5634.2140 5850.1577 2.88 2622 75 109 237 634
ibm15 1019 / 393 6353.8948 6353.8947 6328.6329 2.94 3770 100 152 331 1039
ibm16 633 / 458 7622.8724 7622.8723 7563.6297 0.95 2038 41 65 193 520
ibm17 682 / 760 6827.7756 6827.7754 6870.9049 1.78 2200 46 67 139 389
ibm18 658 / 285 6101.0694 6101.0692 6050.4116 1.35 3544 57 82 185 454

Average 1.18 1901 5.9% 9.6% 22.3% 47.3%

www.manaraa.com

121

 2000
 2200
 2400
 2600
 2800
 3000
 3200
 3400
 3600
 3800
 4000
 4200

 0 500 1000 1500 2000 2500

#Iter = 2336, Height = 2150.3367

(a) ibm01

 3000

 3500

 4000

 4500

 5000

 5500

 0 50 100 150 200 250 300 350 400 450 500

#Iter = 485, Height = 3050.4861

(b) ibm02

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

 10000

 0 20 40 60 80 100 120 140 160

#Iter = 157, Height = 6383.9536

(c) ibm12

 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000

 0 500 1000 1500 2000 2500 3000 3500 4000

#Iter = 3770, Height = 6328.6328

(d) ibm15

Figure 5.5 Layout-height convergence graphs of circuits ibm01, ibm02, ibm12, ibm15.

Finally, we have three remarks on SDS:

1. As SDS sets the initial width of each soft block at its minimal width, such initial floorplan is

actually considered as the worse start point for SDS. This means if any better initial shape is

given, SDS will converge to Y even faster.

2. In our experiments, we never notice that the solution generated by the basic SDS contains more

than one soft HCP or VCP. So if ignoring the numerical error mentioned previously, SDS obtains

the optimal layout height for all circuits in the experiments simply by the basic SDS.

3. The experimental results show that after around 1
5 of the total iterations, the difference between

www.manaraa.com

122

yn+1 and Y is already considered quite small, i.e., less than 1%. So in practice if it is not

necessary to obtain an optimal solution, we can basically set a threshold value on the amount of

change on yn+1 as the stopping criterion. For example, if the amount of change on yn+1 is less

than 1% during the last 10 iterations, then SDS will stop.

5.7 Conclusion

In this chapter, we have proposed an efficient, scalable and optimal slack-driven shaping algorithm

for soft blocks in non-slice floorplan. Unlike previous work, we formulate the problem in a way, such

that it can be applied for fixed-outline floorplanning. For all cases in our experiments, the basic SDS is

sufficient to obtain an optimal solution. Both the efficiency and effectiveness of SDS have been validated

by comprehensive experimental results. In the future, we will modify SDS so that it can also be applied

for classical floorplanning. We also believe the slack-driven shaping algorithm can be modified and

applied on buffer/wire sizing in timing optimization.

www.manaraa.com

123

CHAPTER 6 Geometry Constraint Aware Floorplan-Guided Placement

One never notices what has been done; one can only see what remains to be done.

— Marie Curie

6.1 Introduction

In Chapter 3, we present FLOP that can effectively handle large-scale mixed-side designs with all

movable objects. In this chapter, we propose several key techniques to be improve FLOP, and imple-

ment an ultimate geometry constraint aware floorplan-guided placer, namely FLOPC. The main focus of

these techniques is to enable an efficient annealing-based floorplanning framework to handle the geom-

etry constraints. To further improve the QoR of FLOPC, we apply SafeChoice as the stand-alone clus-

tering algorithm applied in the block formation step to cut down the problem size. Moreover, a min-cost

flow algorithm is used to substitute the linear programming formulation in the shifting step to speedup

the runtime. FLOPC can efficiently handle mixed-size designs with various geometry constraints, e.g.,

preplaced, range and boundary constraints, etc. To demonstrate the effectiveness of FLOPC, we derived

another version of Modern Mixed-Size (MMS) placement benchmarks with geometry constraints.

The rest of this chapter is organized as follows. Section 6.2 gives the overview of FLOPC. Sec-

tion 6.3 describes the enhanced annealing-based floorplanning framework. The experimental results are

presented in Section 6.4. Finally, this chapter ends with a conclusion in Section 6.5.

6.2 Overview of FLOPC

Essentially, FLOPC follows the same algorithm flow in Figure 1.3.

www.manaraa.com

124

1. Block Formation: In this step, SafeChoice is first applied to cluster the small objects in the

circuit. To further cut down the problem size after clustering, we still perform partitioning on the

clustered netlist. At the end, small objects in each partition are clustered into a soft block and

each big macro becomes one single hard block.

2. Floorplanning: Different from FLOP, in this step we adopt an enhanced annealing-based floor-

planning framework. Due to the inherent slowness of annealing, we are not completely relying on

it to produce a good floorplan. Basically, we first apply DeFer to generate a floorplan containing

only the blocks without geometry constraints, i.e., non-constraint blocks. Secondly, we physically

insert the constraint blocks into this floorplan and obtain an initial legal floorplan containing all

blocks in the circuit. After such insertion, the constraint blocks are close to their locations spec-

ified in the geometry constraints, and most non-constraint blocks also maintain their previous

locations generated by DeFer. Thus, this initial floorplan gives the annealing-based floorplan-

ner a good start point. Finally, we apply the annealing process to further optimize the complete

block-level netlist with geometry constraint awareness, and output a final legal floorplan.

3. Wirelength-Driven Shifting: We use the min-cost flow based algorithm in [42] to substitute the

LP-based shifting process in FLOP. This significantly cuts down the runtime of the shifting step,

while obtaining the same optimal layout solution.

4. Incremental Placement: In the last step, we apply the same analytical placement algorithm as

in Figure 3.2 to further optimize the location of the small objects.

6.3 Enhanced Annealing-Based Floorplanning

In this section, we present the enhanced annealing-based floorplanning adopted in the floorplan-

ning step in FLOPC. We use the sequence pair to represent a floorplan layout in the annealing-based

framework. Let S(S+, S−) denote the sequence pair, where S+ is the positive sequence and S− is the

negative sequence. To model the geometry relationship among the blocks, the horizontal and vertical

constraint graphs are derived from a given sequence pair. In the constraint graph, the vertex represents

the block and the edge between two vertices represents the non-overlapping constraint between the two

www.manaraa.com

125

corresponding blocks. Using the longest path algorithm, the block locations can be calculated from the

given constraint graphs.

The algorithm flow of the enhanced annealing-based floorplanning is shown in Figure 6.1. Comparing

this flow with the flow of traditional annealing-based floorplanner, the main difference is the generation

of initial floorplan. Rather than starting from a random initial floorplan, which the traditional approach

does, as shown in Figure 6.1 we start the annealing process based on an initial floorplan linit generated

from a high-quality sequence pair, i.e., Sinit. Sinit is produced by inserting the sequence pair containing

only constraint blocks (i.e., Sc) into the sequence pair containing only non-constraint blocks (i.e., Sc).

It is a high-quality sequence pair in the following two aspects:

• In the initial legal floorplan linit generated from Sinit, the constraint blocks are placed close to

the physical locations specified in the geometry constraints.

• The initial locations of non-constraint blocks are generated by the high-quality floorplanner De-

Fer with both wirelength and packing awareness. Although after insertion some of their locations

may be disturbed, most non-constraint blocks still hold their initial positions.

As a result, the initial floorplan linit gives the annealing process a much better solution to start with.

This significantly improves both the efficiency and quality of the annealing-based floorplanning. In

order to generate a high-quality initial sequence pair Sinit, we propose two key techniques: 1) A simple

and efficient sequence pair generation algorithm that produces a sequence pair from a given legal layout;

2) A location aware sequence pair insertion algorithm that inserts one sequence pair into another while

maintaining the block physical locations as much as possible. These two techniques are described in

the subsequent two subsections.

6.3.1 Sequence Pair Generation from Given Layout

Since the sequence pair representation was introduced in [71], a lot of previous work have been

focusing on efficiently generating a legal layout from a given sequence pair. Few algorithm has been

proposed to solve the problem of generating a sequence pair from a given legal layout. In [71], Murata

et al. used the Gridding method via drawing the up-right and down-left step-lines to derive a sequence

www.manaraa.com

126

Generate sequence pair

Block-level netlist

Non-constraint
blocks

Constraint
blocks

DeFer Generate sequence pair

Optimized
Legal Layout

Sc

Sc-

Insert intoSc Sc-

Sinit

Generate initial floorplan l init

Set initial temperature

Perturb floorplan l new

Accept ?

Continue at current
temperature ?

= l newl

Reduce temperature

Cold enough ?

Final floorplan

Y N

Y

N

N

Y

Figure 6.1 Flow of enhanced annealing-based floorplanning.

www.manaraa.com

127

bL R

U

B

UL UR

BL BR

Figure 6.2 Divided eight chip regions around block b.

pair from a layout. However, this method is not intuitive for implementation. In this subsection, we

propose a very simple and efficient O(n2) algorithm to solve this problem.

To construct a sequence pair S(S+, S−) from a given legal layout, we apply the following three

steps:

1. First, based on the physical location information in the layout, we determine the relative orders

of every two blocks in both S+ and S−.

2. Second, two directed acyclic graphsG+ andG− are constructed. InG+, each vertex corresponds

to a block in the design and each direct edge between two vertices represents the relative order of

the corresponding two blocks in S+. G− is constructed in a similar way for S−.

3. Finally, by applying topological sort on G+ and G−, we can generate S+ and S−, respectively.

In the following part, we use two blocks a and b as an example to demonstrate how to determine their

relative orders in S+ and S−.

In the layout, we divide the part of whole chip region, which is not occupied by block b, into the

following eight regions, left (L), right (R), upper (U), bottom (B), upper-left (UL), upper-right (UR),

bottom-left (BL) and bottom-right (BR) regions (see Figure 6.2). Given another block a, there are

the following eight 1 possible location relations between a and b in the layout.

1. a is on the left of b, if a overlaps with L region.
1Since the given layout is legal, a and b would not overlap with each other.

www.manaraa.com

128

2. a is on the right of b, if a overlaps with R region.

3. a is above b, if a overlaps with U region.

4. a is below b, if a overlaps with B region.

5. a is on the left of and above b, if a only overlaps with UL region.

6. a is on the right of and above b, if a only overlaps with UR region.

7. a is on the left of and below b, if a only overlaps with BL region.

8. a is on the right of and below b, if a only overlaps with BR region.

As we know, a sequence pair S(S+, S−) containing a and b imposes the following horizontal and

vertical relations between a and b in the layout:

• Horizontal Relation

If a is before b in S+ and before b in S−, a is on the left of b in the layout.

If a is after b in S+ and after b in S−, a is on the right of b in the layout.

• Vertical Relation

If a is after b in S+ and before b in S−, a is below b in the layout.

If a is before b in S+ and after b in S−, a is above b in the layout.

Based on the above statements, if the horizontal and vertical relations between a and b are known, we

can trace back to the sequence pair and find out their relative orders in S+ and S−. Therefore, for the

eight possible location relations mentioned previously, their corresponding relative orders between a

and b in S+ and S− are determined as follows.

1. If a is on the left of b, a is before b in S+ and before b in S−.

2. If a is on the right of b, a is after b in S+ and after b in S−.

3. If a is above b, a is before b in S+ and after b in S−.

4. If a is below b, a is after b in S+ and before b in S−.

www.manaraa.com

129

5. If a is on the left of and above b, a is before b in S+.

6. If a is on the right of and above b, a is after b in S−

7. If a is on the left of and below b, a is before b in S−.

8. If a is on the right of and below b, a is after b in S+.

Using the above eight conditions, we can determine the relative order of any two blocks in S.

Now we construct two directed acyclic graphs G+ and G− to capture the relative order information

for every pair of blocks in S+ and S−. For example, G+ can be build up in the following manner. Each

vertex in G+ represents a block in the design. Given any two blocks a and b, if a is before b in S+,

then a direct edge from a to b is added; if a is after b in S+, then a direct edge from b to a is added;

otherwise, no edge is added between a and b. G− can be build up in the similar manner for every pair

of blocks in S−.

Finally, we apply topological sort on these two graphs G+ and G−. After sorting, the resulted

sequences from G+ and G− are basically S+ and S−, respectively.

As you can see, the process of sequence pair generation takesO(n2) time, as we traverse every pair

of blocks in the design. Nevertheless, sometimes it is not necessary consider every pair of blocks. For

example, given three blocks a, b and c, in the layout if a is on the left of b and b is on the left of c, it is

certain that a is on the left of c, which means we do not need to consider the relative order between a and

c in both S+ and S−. In order to capture such transitive relation, more sophisticated data structure is

needed, and thus potentially the algorithm complexity can be cut down to O(n log n). Because during

the whole annealing flow in Figure 6.1 we only apply the sequence pair generation technique twice,

i.e., generating Sc and Sc, the potential runtime improvement from O(n2) to O(n log n) would not be

significant.

6.3.2 Sequence Pair Insertion with Location Awareness

In Figure 6.1, two sequence pairs Sc and Sc are combined to generate Sinit that contains all blocks in

the design, such that the following two goals are achieved: 1) The locations of constraint blocks in linit

should be close to the locations specified in the geometry constraints; 2) The locations of non-constraint

www.manaraa.com

130

blocks in linit should be close to the locations generated by DeFer in the previous step. To achieve these

two goals, in this subsection we propose a location aware sequence pair insertion technique that inserts

Sc(S+
c , S

−
c) into Sc(S+

c , S
−
c). The resulted sequence pair after the insertion is Sinit.

Practically, the constraint block can be inserted at any position in the sequence pair. However, in

order to produce minimal disturbance on the original block locations, it is obvious that during the inser-

tion the relative orders of blocks in both Sc and Sc should not be changed. Moreover, for each constraint

block there should be a corresponding range of the possible insertion positions in the sequence pair. We

call such range insertion range. For each block to be inserted, the insertion range specifies the left-most

and right-most possible insertion positions in the sequence pair.

The main idea of the insertion technique we propose is to use block packing to find the insertion

range in both S+
c and S−c for each constraint block. For example, given a constraint block i, we want to

find its right-most insertion position in S−c . Based on the horizontal and vertical relations imposed by

the sequence pair, the blocks before i in S−c should be either on the left or below i in the layout. Thus,

we traverse the blocks in S−c from left to right and pack them one by one to the bottom-left corner of the

chip region, until we find any block in S−c , say block j, is neither on the left nor below i. This means

block j has to be after block i in S−c . Thus, the position before block j in S−c is basically the right-most

insertion position for block i.

Before we present the detailed algorithm of calculating the insertion range in S+
c and S−c , we first

introduce some notations. Let Cul, Cur, Cbl and Cbr denote the upper-left, upper-right, bottom-left, and

bottom-right corners of the chip region, respectively. Assuming the index of the non-constraint blocks

are 1, 2, . . . ,m, and index of the constraint blocks are 1, 2, . . . , n. Let S+[i] denote the index of the

block at the ith position in S+, similarly we can define S−[i]. We define (L+
i , R

+
i) as the insertion

range in S+
c for block i, where L+

i and R+
i denote the left-most and right-most insertion positions,

respectively. Similarly, the insertion range in S−c for block i is defined as (L−i , R
−
i).

The pseudocode of calculating the insertion range in S+
c and S−c are shown in Figure 6.3 and 6.4,

respectively. Before calculating the insertion range, it is first initialized as spanning the whole sequence,

i.e., the left-most and right-most insertion positions are the start and end position of the final sequence,

respectively. This initial range is considered to be loose, which basically implies the constraint block

www.manaraa.com

131

can be inserted at any position. As the algorithm moves forward, a tighter range will be determined

based on packing. After the insertion range is determined for each constraint block, the middle position

between the left-most and right-most insertion positions is used as the final insertion position.

6.3.3 Constraint Handling and Annealing Schedule

Essentially, we adopt a similar annealing-based method as in [72] to handle various geometry con-

straints. Specifically, in FLOPC we consider the following three kinds of geometry constraints:

• Preplaced Constraint: This constraint is imposed, when some block has to be preplaced and

fixed at some location in the chip region.

• Range Constraint: This constraint specifies that some block has to be within a certain coordi-

nates range in either horizontal or vertical direction. If both horizontal and vertical range con-

straints are imposed on the same block, then this constraint is the same as region constraint.

• Boundary Constraint: This constraint specifies that some block has to be placed along either

one of the four boundaries of the chip region.

The above three geometry constraints are the most commonly considered ones in modern mixed-size

placement. Based on the framework proposed in [72], FLOPC can be easily extended to handle other

geometry constraints.

As shown in Figure 6.1, after the initial floorplan linit is generated, we apply the annealing process to

optimize both the total HPWL and packing among the blocks, while satisfying the geometry constraints.

Therefore, the following cost function is used to evaluate a floorplan in annealing.

C = W + αPo + βPc

In the above cost function, W is the term of average HPWL over all nets in the block-level netlist, Po

is the penalty term if the blocks are placed outside of the chip region, and Pc is the penalty term for the

geometry constraints. α and β are the weight among the three terms (by default, α = 2 and β = 4). In

each annealing iteration we first apply one of the following four moves to change the existing floorplan

l.

www.manaraa.com

132

• Switch two random blocks in one sequence pair

• Rotate random hard blocks

• Switch two random blocks on the horizontal or vertical critical path

• Rotate random hard bocks on the horizontal or vertical critical path

To shape the soft blocks in the floorplan, we use the shaping algorithm SDS proposed in Chapter 5.

Because SDS is always applied on some existing floorplan where the soft blocks have reasonably good

shape, we do not need to stop SDS until it converges. We basically run at most γ iterations of shaping

inside each annealing iteration (γ = 100 by default). The output of SDS is the new floorplan lnew

obtained. Then we will compare the cost between lnew and l to determine whether we should accept

this move or not.

6.4 Experimental Results

In this section, we first describe the construction of the MMS benchmarks with geometry con-

straints. Then we present the experimental results of FLOPC on this new set of benchmarks. All

experiments are run on a Linux server with AMD Opteron 2.59 GHz CPU and 16GB memory.

In Chapter 3, we construct the Modern Mixed-Size (MMS) placement benchmarks based on ISPD05/06

benchmarks. But, in MMS benchmarks all objects are movable except the I/O objects. In order to show

the effectiveness of FLOPC, for each circuit in MMS benchmarks we add some geometry constraints

on some hard macros. Basically, we add three kinds of geometry constraints, preplaced, range and

boundary constraints. The list of various geometry constraints in each circuit is shown in Table 6.1.

The experimental results on MMS benchmarks with geometry constraints are shown in Table 6.2.

It is clear that FLOPC is able to efficiently and successfully satisfy all geometry constraints on all 16

circuits. As all other mixed-size placers can only handle preplaced constraints, we can only compare

with them on 6 circuits. Basically, we compare FLOPC with mPL6 and Capo10.5. Even for the

circuit with only preplaced constraints, it is still every difficult for mPL6 and Capo10.5 to produce

a legal solution. For example, mPL6 failed to generate a legal solution on 4 circuits. On average,

www.manaraa.com

133

Table 6.1 List of geometry constraints in Modern Mixed-Size placement benchmarks.

Geometry Constraints
Circuit #. Preplaced #. Range #. Boundary Total #.

Constraints Constraints Constraints Constraints
adaptec1 4 - - 4
adaptec2 2 1 - 3
adaptec3 6 - - 6
adaptec4 1 1 1 3
bigblue1 2 5 3 10
bigblue2 4 - - 4
bigblue3 2 6 - 8
bigblue4 4 - - 4
adaptec5 2 - - 2
newblue1 1 2 - 3
newblue2 - - 8 8
newblue3 - - 18 18
newblue4 2 4 4 10
newblue5 4 - - 4
newblue6 - 8 - 8
newblue7 - 8 - 8

FLOPC generates 1% and 8% of better wirelength than mPL6 and Capo10.5 respectively. Regarding

the runtime, FLOPC is 7× and 6% faster than Capo10.5 and mPL6 respectively.

6.5 Conclusion

Based on the algorithm flow of FLOP, in this chapter we have presented FLOPC that can efficiently

handle large-scale mixed-size designs with various geometry constraints. FLOPC adopts an annealing-

based floorplanning framework to handle various geometry constraints. Several key techniques are

proposed to improve the efficiency of such annealing-based framework. Promising experimental results

are shown to demonstrate the effectiveness of FLOPC. Such high-quality and effective placement tool

is expected to handle the challenges and complexities of modern large-scale mixed-size placements.

www.manaraa.com

134

Table 6.2 Comparison with mixed-size placers on MMS benchmarks with constraints (* circuit with
only preplaced constraints).

Circuit mPL6[6] Capo10.5[2] FLOPC
HPWL (×10e6) Time (s) HPWL (×10e6) Time (s) HPWL (×10e6) Time (s)

adaptec1* 99.28 2410 100.13 4988 98.11 2267
adaptec2 – – – – 159.38 1021

adaptec3* illegal – 252.64 15322 207.56 2093
adaptec4 – – – – 195.14 1572
bigblue1 – – – – 103.37 1209

bigblue2* illegal – illegal – 167.80 4360
bigblue3 – – – – 540.14 8101

bigblue4* illegal – 912.72 102460 SEGV SEGV
adaptec5* illegal – 385.86 34277 355.05 4170
newblue1 – – – – 80.75 1862
newblue2 – – – – 342.25 5887
newblue3 – – – – 552.90 3482
newblue4 – – – – 250.33 2501

newblue5* illegal – 550.69 66594 546.80 7454
newblue6 – – – – 531.02 13177
newblue7 – – – – 2178.60 9075

Norm 1.01 1.06 1.08 6.67 1 1

Begin
1. Initialize L+

i = 1, 1 ≤ i ≤ n
2. k = n.
3. For j = m to 1
4. b = S+

c [j].
5. Pack block b to Cbr.
6. For i = k to 1
7. bc = S+

c [i].
8. If b is neither on the right of nor below bc,
9. L+

bc
= j + 1.

10. k = k − 1.
11. j = j + 1.
12. Break.
End

(a) Left-most insertion position calculation

Begin
1. Initialize R+

i = m+ n, 1 ≤ i ≤ n
2. k = n.
3. For j = 1 to m
4. b = S+

c [j].
5. Pack block b to Cul.
6. For i = 1 to k
7. bc = S+

c [i].
8. If b is neither on the left of nor above bc,
9. R+

bc
= j − 1.

10. k = k + 1.
11. j = j − 1.
12. Break.
End

(b) Right-most insertion position calculation

Figure 6.3 Calculation of insertion range in S+
c .

www.manaraa.com

135

Begin
1. Initialize L−i = 1, 1 ≤ i ≤ n
2. k = n.
3. For j = m to 1
4. b = S−c [j].
5. Pack block b to Cur.
6. For i = k to 1
7. bc = S−c [i].
8. If b is neither on the right of nor above bc,
9. L−bc = j + 1.
10. k = k − 1.
11. j = j + 1.
12. Break.
End

(a) Left-most insertion position calculation

Begin
1. Initialize R−i = m+ n, 1 ≤ i ≤ n
2. k = n.
3. For j = 1 to m
4. b = S−c [j]
5. Pack block b to Cbl.
6. For i = 1 to k
7. bc = S−c [i].
8. If b is neither on the left of nor below bc,
9. R−bc = j − 1.
10. k = k + 1.
11. j = j − 1.
12. Break.
End

(b) Right-most insertion position calculation

Figure 6.4 Calculation of insertion range in S−c .

www.manaraa.com

136

BIBLIOGRAPHY

[1] T. Taghavi, X. Yang, B.-K. Choi, M. Yang, and M. Sarrafzadeh. Dragon2006: Blockage-aware

congestion-controlling mixed-size placer. In Proc. ISPD, pages 209–211, 2006.

[2] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut floorplacement. IEEE Trans. on

Computer-Aided Design, 25(7):1313–1326, July 2006.

[3] N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0: A fast multilevel quadratic placement algo-

rithm with placement congestion control. In Proc. ASP-DAC, pages 135–140, 2007.

[4] A. B. Kahng and Q. Wang. A faster implementation of APlace. In Proc. ISPD, pages 218–220,

2006.

[5] P. Spindler, U. Schlichtmann, and F. M. Johannes. Kraftwerk2 – A fast force-directed quadratic

placement approach using an accurate net model. IEEE Trans. on Computer-Aided Design,

27(8):1398–1411, August 2008.

[6] T. Chan, J. Cong, J. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced multilevel mixed-sized

placement. In Proc. ISPD, pages 212–214, 2006.

[7] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. A high-quality mixed-size

analytical placer considering preplaced blocks and density constraints. In Proc. ICCAD, pages

187–192, 2006.

[8] T.-C. Chen, P.-H. Yuh, Y.-W. Chang, F.-J. Huang, and D. Liu. MP-tree: A packing-based macro

placement algorithm for mixed-size designs. In Proc. DAC, pages 447–452, 2007.

[9] H.-C. Chen, Y.-L. Chuang, Y.-W. Chang, and Y.-C. Chang. Constraint graph-based macro place-

ment for modern mixed-size circuit designs. In Proc. ICCAD, pages 218–223, 2008.

www.manaraa.com

137

[10] S. Adya and I. Markov. Consistent placement of macro-blocks using floorplanning and standard-

cell placement. In Proc. ISPD, pages 12–17, 2002.

[11] J. Z. Yan and C. Chu. DeFer: Deferred decision making enabled fixed-outline floorplanner. In

Proc. DAC, pages 161–166, 2008.

[12] J. Z. Yan and C. Chu. DeFer: Deferred decision making enabled fixed-outline floorplanning

algorithm. IEEE Trans. on Computer-Aided Design, 43(3):367–381, March 2010.

[13] J. Z. Yan, N. Viswanathan, and C. Chu. Handling complexities in modern large-scale mixed-size

placement. In Proc. DAC, pages 436–441, 2009.

[14] J. Z. Yan, C. Chu, and W. K. Mak. SafeChoice: A novel clustering algorithm for wirelength-driven

placement. In Proc. ISPD, pages 185–192, 2010.

[15] J. Z. Yan, C. Chu, and W. K. Mak. SafeChoice: A novel approach to hypergraph clustering for

wirelength-driven placement. IEEE Trans. on Computer-Aided Design, 30(7), July 2011.

[16] J. Z. Yan and C. Chu. Optimal slack-driven block shaping algorithm in fixed-outline floorplanning.

submitted to ICCAD 2011.

[17] A. B. Kahng. Classical floorplanning harmful? In Proc. ISPD, pages 207–213, 2000.

[18] R. H. J. M. Otten. Efficient floorplan optimization. In Proc. ICCD, pages 499–502, 1983.

[19] S. N. Adya and I. L. Markov. Fixed-outline floorplanning through better local search. In Proc.

ICCD, pages 328–334, 2001.

[20] S. N. Adya and I. L. Markov. Fixed-outline floorplanning: Enabling hierarchical design. IEEE

Trans. on VLSI Systems, 11(6):1120–1135, December 2003.

[21] T.-C. Chen and Y.-W. Chang. Modern floorplanning based on B*-trees and fast simulated anneal-

ing. IEEE Trans. on Computer-Aided Design, 25(4):637–650, April 2006.

[22] Y. C. Wang, Y. W. Chang, G. M. Wu, and S. W. Wu. B*-Tree: A new representation for non-slicing

floorplans. In Proc. DAC, pages 458–463, 2000.

www.manaraa.com

138

[23] T.-C. Chen, Y.-W. Chang, and S.-C. Lin. A new multilevel framework for large-scale interconnect-

driven floorplanning. IEEE Trans. on Computer-Aided Design, 27(2):286–294, February 2008.

[24] S. Chen and T. Yosihmura. Fixed-outline floorplanning: Enumerating block positions and a new

objective function for calculating area costs. IEEE Trans. on Computer-Aided Design, 27(5):858–

871, May 2008.

[25] O. He, S. Dong, J. Bian, S. Goto, and C.-K. Cheng. A novel fixed-outline floorplanner with zero

deadspace for hierarchical design. In Proc. ICCAD, pages 16–23, 2008.

[26] A. Ranjan, K. Bazargan, S. Ogrenci, and M. Sarrafzadeh. Fast floorplanning for effective predic-

tion and construction. IEEE Trans. on VLSI Systems, 9(2):341–352, April 2001.

[27] P. G. Sassone and S. K. Lim. A novel geometric algorithm for fast wire-optimized floorplanning.

In Proc. ICCAD, pages 74–80, 2003.

[28] Y. Zhan, Y. Feng, and S. S. Sapatnekar. A fixed-die floorplanning algorithm using an analytical

approach. In Proc. ASP-DAC, pages 771–776, 2006.

[29] J. Cong, M. Romesis, and J. R. Shinnerl. Fast floorplanning by look-ahead enabled recursive

bipartitioning. IEEE Trans. on Computer-Aided Design, 25(9):1719–1732, September 2006.

[30] M. Lai and D. F. Wong. Slicing tree is a complete floorplan representation. In Proc. DATE, pages

228–232, 2001.

[31] L. Stockmeyer. Optimal orientations of cells in slicing floorplan designs. Information and Control,

57:91–101, May/June 1983.

[32] G. Zimmermann. A new area and shape function estimation technique for VLSI layouts. In Proc.

DAC, pages 60–65, 1988.

[33] A. E. Dunlop and B. W. Kernighan. A procedure for placement of standard-cell VLSI circuits.

IEEE Trans. on Computer-Aided Design, 4(1):92–98, January 1985.

[34] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proc. DAC, pages 343–

348, 1999.

www.manaraa.com

139

[35] S. Goto. An efficient algorithm for the two-dimensional placement problem in electrical circuit

layout. IEEE Trans. on Circuits and Systems, CAS-28(1):12–18, January 1981.

[36] GSRC floorplan benchmarks.

http://vlsicad.eecs.umich.edu/BK/GSRCbench/.

[37] HB floorplan benchmarks.

http://cadlab.cs.ucla.edu/cpmo/HBsuite.html.

[38] A. Ng, I. L. Markov, R. Aggarwai, and V. Ramachandran. Solving hard instances of floorplace-

ment. In Proc. ISPD, pages 170–177, 2006.

[39] Source Code and Benchmarks Download.

http://www.public.iastate.edu/˜zijunyan/.

[40] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The ISPD2005 placement contest

and benchmarks suite. In Proc. ISPD, pages 216–220, 2005.

[41] G.-J. Nam. ISPD 2006 placement contest: Benchmark suite and results. In Proc. ISPD, pages

167–167, 2006.

[42] X. Tang, R. Tian, and M. D. F. Wong. Minimizing wire length in floorplanning. IEEE Trans. on

Computer-Aided Design, 25(9):1744–1753, September 2006.

[43] P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An O-tree representation of non-slicing floorplan and

its applications. In Proc. DAC, pages 268–273, 1999.

[44] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng. A fast hierarchical quadratic

placement algorithm. IEEE Trans. on Computer-Aided Design, 25(4):678–691, April 2006.

[45] M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed placement algorithm. In

Proc. ICCAD, pages 48–55, 2005.

[46] S. Adya, S. Chaturvedi, J. Roy, D. Papa, and I. Markov. Unification of partitioning, placement and

floorplanning. In Proc. ICCAD, pages 550–557, 2004.

http://vlsicad.eecs.umich.edu/BK/GSRCbench/
http://cadlab.cs.ucla.edu/cpmo/HBsuite.html
http://www.public.iastate.edu/~zijunyan/

www.manaraa.com

140

[47] hMetis2.0.

http://glaros.dtc.umn.edu/gkhome/.

[48] QSopt LP Solver.

http://www.isye.gatech.edu/˜wcook/qsopt/.

[49] P. Spindler and F. M. Johannes. Fast and robust quadratic placement combined with an exact linear

net model. In Proc. ICCAD, pages 179–186, 2006.

[50] J. Cong and M. Xie. A robust detailed placement for mixed-size IC designs. In Proc. ASP-DAC,

pages 188–194, 2006.

[51] B. Hu and M. Marek-Sadowska. Multilevel fixed-point-addition-based VLSI placement. IEEE

Trans. on Computer-Aided Design, 24(8):1188–1203, August 2005.

[52] N. Viswanathan, G.-J. Nam, C. Alpert, P. Villarrubia, H. Ren, and C. Chu. RQL: Global placement

via relaxed quadratic spreading and linearization. In Proc. DAC, pages 453–458, 2007.

[53] C. J. Alpert and A. B. Kahng. Recent developments in netlist partitioning: A survey. Integration,

the VLSI Journal, 19(1-2):1–81, August 1995.

[54] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning: Appli-

cation in VLSI domain. In Proc. DAC, pages 526–529, 1997.

[55] C. J. Alpert, J.-H. Huang, and A. B. Kahng. Multilevel k-way hypergraph partitioning. In Proc.

DAC, pages 530–533, 1997.

[56] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit placement.

In Proc. ISPD, pages 185–192, 2005.

[57] J. Cong and S. K. Lim. Edge separability-based circuit clustering with application to multilevel

circuit partitioning. IEEE Trans. on Computer-Aided Design, 23(3):346–357, March 2004.

[58] B. Hu and M. Marek-Sadowska. Fine granularity clustering-based placement. IEEE Trans. on

Computer-Aided Design, 23(4):527–536, April 2004.

http://glaros.dtc.umn.edu/gkhome/
http://www.isye.gatech.edu/~wcook/qsopt/

www.manaraa.com

141

[59] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng. A fast hierarchical quadratic

placement algorithm. IEEE Trans. on Computer-Aided Design, 25(4):678–691, April 2006.

[60] J. Li, L. Behjat, and J. Huang. An effective clustering algorithm for mixed-size placement. In

Proc. ISPD, pages 111–118, 2007.

[61] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network partitions.

In Proc. DAC, pages 175–181, 1982.

[62] H. Chen, C.-K. Cheng, N.-C. Chou, A. B. Kahng, J. F. MacDonald, P. Suaris, B. Yao, and Z. Zhu.

An algebraic multigrid solver for analytical placement with layout based clustering. In Proc. DAC,

pages 794–799, 2003.

[63] P. Pan and C. L. Liu. Area minimization for floorplans. IEEE Trans. on Computer-Aided Design,

14(1):129–132, January 1995.

[64] T. C. Wang and D. F. Wong. Optimal floorplan area optimization. IEEE Trans. on Computer-Aided

Design, 11(8):992–1001, August 1992.

[65] M. Kang and W. W. M. Dai. General floorplanning with L-shaped, T-shaped and soft blocks based

on bounded slicing grid structure. In Proc. ASP-DAC, pages 265–270, 1997.

[66] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Module placement on BSG-structure and

IC layout applications. In Proc. ICCAD, pages 484–491, 1996.

[67] T. S. Moh, T. S. Chang, and S. L. Hakimi. Globally optimal floorplanning for a layout problem.

IEEE Trans. on Circuits and Systems I, 43:713–720, September 1996.

[68] H. Murata and E. S. Kuh. Sequence-pair based placement method for hard/soft/pre-placed mod-

ules. In Proc. ISPD, pages 167–172, 1998.

[69] F. Y. Young, C. C. N. Chu, W. S. Luk, and Y. C. Wong. Handling soft modules in general

non-slicing floorplan using Lagrangian relaxation. IEEE Trans. on Computer-Aided Design,

20(5):687–692, May 2001.

www.manaraa.com

142

[70] C. Lin, H. Zhou, and C. Chu. A revisit to floorplan optimization by Lagrangian relaxation. In

Proc. ICCAD, pages 164–171, 2006.

[71] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module placement based on

rectangle-packing by the sequence-pair. IEEE Trans. on Computer-Aided Design, 15(12):1518–

1524, December 1996.

[72] E. F. Y. Young, C. C. N. Chu, and M. L. Ho. Placement constraints in floorplan design. IEEE

Trans. on VLSI Systems, 12(7):735–745, July 2004.

	2011
	Floorplan-guided placement for large-scale mixed-size designs
	Zijun Yan
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1 Introduction
	1.1 Modern Mixed-Size Placement
	1.2 Previous Work
	1.3 New Algorithm Flow and Key Techniques
	1.4 Dissertation Organization
	Note About Bibliography

	2 Fixed-Outline Floorplanning
	2.1 Introduction
	2.1.1 Previous Work
	2.1.2 Our Contributions

	2.2 Algorithm Flow of DeFer
	2.3 Generalized Slicing Tree
	2.3.1 Notion of Generalized Slicing Tree
	2.3.2 Extended Shape Curve Operation
	2.3.3 Decision of Slice Line Direction for Terminal Propagation

	2.4 Whitespace-Aware Pruning
	2.4.1 Motivation on WAP
	2.4.2 Problem Formulation of WAP
	2.4.3 Solving WAP

	2.5 Enumerative Packing
	2.5.1 A Naive Approach of Enumeration
	2.5.2 Enumeration by Dynamic Programming
	2.5.3 Impact of EP on Packing
	2.5.4 High-Level EP

	2.6 Block Swapping and Mirroring
	2.7 Extension of DeFer
	2.8 Implementation Details
	2.9 Experimental Results
	2.9.1 Experiments on Fixed-Outline Floorplanning
	2.9.2 Experiments on Classical Outline-Free Floorplanning

	2.10 Conclusion

	3 General Floorplan-Guided Placement
	3.1 Introduction
	3.2 Overview of FLOP
	3.3 Block Formation and Floorplanning
	3.3.1 Usage of Exact Net Model
	3.3.2 Block Formation
	3.3.3 Generation of Shape Curve for Blocks

	3.4 Wirelength-Driven Shifting
	3.5 Incremental Placement
	3.6 MMS Benchmarks
	3.7 Experimental Results
	3.8 Conclusion

	4 Hypergraph Clustering for Wirelength-Driven Placement
	4.1 Introduction
	4.1.1 Previous Work
	4.1.2 Our Contributions

	4.2 Safe Clustering
	4.2.1 Concept of Safe Clustering
	4.2.2 Safe Condition for Pair-Wise Clustering
	4.2.3 Selective Enumeration

	4.3 Algorithm of SafeChoice
	4.3.1 Priority-Queue Based Framework
	4.3.2 Operation Modes of SafeChoice

	4.4 Physical SafeChoice
	4.4.1 Safe Condition for Physical SafeChoice
	4.4.2 Enumeration Size Reduction based on Physical Location
	4.4.3 Cost Function for Physical SafeChoice

	4.5 SafeChoice-Based Two-Phase Placement
	4.6 Experimental Results
	4.6.1 Comparison of Clustering Algorithms
	4.6.2 Comparison of Placement Algorithms

	4.7 Conclusion

	5 Soft-Block Shaping in Floorplanning
	5.1 Introduction
	5.1.1 Previous Work
	5.1.2 Our Contributions

	5.2 Problem Formulation
	5.3 Basic Slack-Driven Shaping
	5.3.1 Target Soft Blocks
	5.3.2 Shaping Scheme
	5.3.3 Flow of Basic Slack-Driven Shaping

	5.4 Optimality Conditions
	5.5 Flow of Slack-Driven Shaping
	5.6 Experimental Results
	5.6.1 Experiments on MCNC Benchmarks
	5.6.2 Experiments on HB Benchmarks

	5.7 Conclusion

	6 Geometry Constraint Aware Floorplan-Guided Placement
	6.1 Introduction
	6.2 Overview of FLOPC
	6.3 Enhanced Annealing-Based Floorplanning
	6.3.1 Sequence Pair Generation from Given Layout
	6.3.2 Sequence Pair Insertion with Location Awareness
	6.3.3 Constraint Handling and Annealing Schedule

	6.4 Experimental Results
	6.5 Conclusion

	BIBLIOGRAPHY

